Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
2306 | SU2adj1nf2 | $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1^2$ + $ M_3\phi_1\tilde{q}_2^2$ + $ M_4q_2\tilde{q}_1$ + $ M_5\phi_1\tilde{q}_1^2$ + $ M_3M_6$ + $ M_4M_6$ + $ M_6M_7$ + $ M_8q_2\tilde{q}_2$ | 0.6895 | 0.8744 | 0.7885 | [X:[], M:[0.6983, 1.305, 0.6933, 0.6933, 0.6966, 1.3067, 0.6933, 0.6916], q:[0.8238, 0.8287], qb:[0.4779, 0.4796], phi:[0.3475]] | [X:[], M:[[-8, 4], [2, 2], [1, -5], [1, -5], [-5, 1], [-1, 5], [1, -5], [4, -8]], q:[[5, -4], [-4, 5]], qb:[[3, 0], [0, 3]], phi:[[-1, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_8$, $ M_4$, $ M_7$, $ M_5$, $ M_1$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_2$, $ M_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_8^2$, $ M_4M_8$, $ M_7M_8$, $ M_4^2$, $ M_4M_7$, $ M_7^2$, $ M_5M_8$, $ M_4M_5$, $ M_5M_7$, $ M_1M_8$, $ M_1M_4$, $ M_1M_7$, $ M_5^2$, $ M_1M_5$, $ M_1^2$, $ M_8\tilde{q}_1\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_7\tilde{q}_1\tilde{q}_2$, $ q_1q_2$, $ M_5\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_8q_1\tilde{q}_2$, $ M_2M_8$, $ M_4q_1\tilde{q}_2$, $ M_7q_1\tilde{q}_2$, $ M_8\phi_1\tilde{q}_1\tilde{q}_2$ | $M_2M_4$, $ M_2M_5$, $ M_2M_7$, $ M_5q_1\tilde{q}_2$, $ M_4\phi_1\tilde{q}_1\tilde{q}_2$, $ M_5\phi_1\tilde{q}_1\tilde{q}_2$, $ M_7\phi_1\tilde{q}_1\tilde{q}_2$ | 1 | t^2.07 + 2*t^2.08 + 2*t^2.09 + t^2.87 + t^3.91 + 2*t^3.92 + 3*t^4.15 + 4*t^4.16 + 5*t^4.17 + 2*t^4.18 + t^4.19 + 3*t^4.95 + 2*t^4.96 + t^4.97 + t^5.75 + 4*t^5.99 + t^6. + t^6.01 + t^6.22 + 5*t^6.23 + 8*t^6.24 + 9*t^6.25 + 6*t^6.26 + 4*t^6.27 + 2*t^6.28 + t^6.78 + 2*t^6.79 + t^7.02 + 5*t^7.03 + 2*t^7.04 + 2*t^7.05 + 2*t^7.06 + t^7.82 + 3*t^7.83 - t^7.84 + 4*t^8.06 + 3*t^8.07 - 3*t^8.08 - 4*t^8.09 + t^8.1 + 3*t^8.3 + 8*t^8.31 + 13*t^8.32 + 15*t^8.33 + 12*t^8.34 + 9*t^8.35 + 7*t^8.36 + 2*t^8.37 + t^8.38 + t^8.62 + 3*t^8.86 - t^8.87 - t^8.88 - t^4.04/y - (3*t^6.12)/y - t^6.13/y - t^6.14/y + (2*t^7.15)/y + (2*t^7.16)/y + (5*t^7.17)/y + t^7.18/y + (5*t^7.95)/y + (3*t^7.96)/y + (2*t^7.97)/y - t^8.19/y - (5*t^8.2)/y - (4*t^8.21)/y - (3*t^8.22)/y - (2*t^8.23)/y + (5*t^8.99)/y - t^4.04*y - 3*t^6.12*y - t^6.13*y - t^6.14*y + 2*t^7.15*y + 2*t^7.16*y + 5*t^7.17*y + t^7.18*y + 5*t^7.95*y + 3*t^7.96*y + 2*t^7.97*y - t^8.19*y - 5*t^8.2*y - 4*t^8.21*y - 3*t^8.22*y - 2*t^8.23*y + 5*t^8.99*y | (g1^4*t^2.07)/g2^8 + (2*g1*t^2.08)/g2^5 + (g2*t^2.09)/g1^5 + (g2^4*t^2.09)/g1^8 + g1^3*g2^3*t^2.87 + (g1^5*t^3.91)/g2 + 2*g1^2*g2^2*t^3.92 + (g1^8*t^4.15)/g2^16 + (2*g1^5*t^4.15)/g2^13 + (3*g1^2*t^4.16)/g2^10 + t^4.16/(g1*g2^7) + (3*t^4.17)/(g1^4*g2^4) + (2*t^4.17)/(g1^7*g2) + (g2^2*t^4.18)/g1^10 + (g2^5*t^4.18)/g1^13 + (g2^8*t^4.19)/g1^16 + (g1^7*t^4.95)/g2^5 + (2*g1^4*t^4.95)/g2^2 + g1*g2*t^4.96 + (g2^4*t^4.96)/g1^2 + (g2^7*t^4.97)/g1^5 + g1^6*g2^6*t^5.75 + (g1^9*t^5.99)/g2^9 + (3*g1^6*t^5.99)/g2^6 - 2*t^6. + (2*g1^3*t^6.)/g2^3 + (g2^3*t^6.)/g1^3 + (g2^6*t^6.01)/g1^6 + (g1^12*t^6.22)/g2^24 + (2*g1^9*t^6.23)/g2^21 + (3*g1^6*t^6.23)/g2^18 + (5*g1^3*t^6.24)/g2^15 + (3*t^6.24)/g2^12 + (5*t^6.25)/(g1^3*g2^9) + (4*t^6.25)/(g1^6*g2^6) + (3*t^6.26)/g1^12 + (3*t^6.26)/(g1^9*g2^3) + (3*g2^3*t^6.27)/g1^15 + (g2^6*t^6.27)/g1^18 + (g2^9*t^6.28)/g1^21 + (g2^12*t^6.28)/g1^24 + g1^8*g2^2*t^6.78 + 2*g1^5*g2^5*t^6.79 + (g1^11*t^7.02)/g2^13 + (2*g1^8*t^7.03)/g2^10 + (3*g1^5*t^7.03)/g2^7 + (g1^2*t^7.04)/g2^4 + t^7.04/(g1*g2) + (g2^2*t^7.05)/g1^4 + (g2^5*t^7.05)/g1^7 + (g2^8*t^7.06)/g1^10 + (g2^11*t^7.06)/g1^13 + (g1^10*t^7.82)/g2^2 + 2*g1^7*g2*t^7.83 + g1^4*g2^4*t^7.83 - g1*g2^7*t^7.84 + (g1^13*t^8.06)/g2^17 + (3*g1^10*t^8.06)/g2^14 + (3*g1^7*t^8.07)/g2^11 - (4*g1*t^8.08)/g2^5 + t^8.08/(g1^2*g2^2) - (2*g2*t^8.09)/g1^5 - (2*g2^4*t^8.09)/g1^8 + (g2^10*t^8.1)/g1^14 + (g1^16*t^8.3)/g2^32 + (2*g1^13*t^8.3)/g2^29 + (3*g1^10*t^8.31)/g2^26 + (5*g1^7*t^8.31)/g2^23 + (8*g1^4*t^8.32)/g2^20 + (5*g1*t^8.32)/g2^17 + (8*t^8.33)/(g1^2*g2^14) + (7*t^8.33)/(g1^5*g2^11) + (6*t^8.34)/(g1^8*g2^8) + (6*t^8.34)/(g1^11*g2^5) + (6*t^8.35)/(g1^14*g2^2) + (3*g2*t^8.35)/g1^17 + (4*g2^4*t^8.36)/g1^20 + (3*g2^7*t^8.36)/g1^23 + (g2^10*t^8.37)/g1^26 + (g2^13*t^8.37)/g1^29 + (g2^16*t^8.38)/g1^32 + g1^9*g2^9*t^8.62 + (g1^12*t^8.86)/g2^6 + (2*g1^9*t^8.86)/g2^3 + g1^6*t^8.87 - 2*g1^3*g2^3*t^8.87 - g2^6*t^8.88 - t^4.04/(g1*g2*y) - (g1^3*t^6.12)/(g2^9*y) - (2*t^6.12)/(g2^6*y) - t^6.13/(g1^6*y) - (g2^3*t^6.14)/(g1^9*y) + (2*g1^5*t^7.15)/(g2^13*y) + (g1^2*t^7.16)/(g2^10*y) + t^7.16/(g1*g2^7*y) + (3*t^7.17)/(g1^4*g2^4*y) + (2*t^7.17)/(g1^7*g2*y) + (g2^5*t^7.18)/(g1^13*y) + (2*g1^7*t^7.95)/(g2^5*y) + (3*g1^4*t^7.95)/(g2^2*y) + (3*g2^4*t^7.96)/(g1^2*y) + (2*g2^7*t^7.97)/(g1^5*y) - (g1^7*t^8.19)/(g2^17*y) - (2*g1^4*t^8.2)/(g2^14*y) - (3*g1*t^8.2)/(g2^11*y) - t^8.21/(g1^2*g2^8*y) - (3*t^8.21)/(g1^5*g2^5*y) - (2*t^8.22)/(g1^8*g2^2*y) - (g2*t^8.22)/(g1^11*y) - (g2^4*t^8.23)/(g1^14*y) - (g2^7*t^8.23)/(g1^17*y) + (g1^9*t^8.99)/(g2^9*y) + (4*g1^6*t^8.99)/(g2^6*y) - (t^4.04*y)/(g1*g2) - (g1^3*t^6.12*y)/g2^9 - (2*t^6.12*y)/g2^6 - (t^6.13*y)/g1^6 - (g2^3*t^6.14*y)/g1^9 + (2*g1^5*t^7.15*y)/g2^13 + (g1^2*t^7.16*y)/g2^10 + (t^7.16*y)/(g1*g2^7) + (3*t^7.17*y)/(g1^4*g2^4) + (2*t^7.17*y)/(g1^7*g2) + (g2^5*t^7.18*y)/g1^13 + (2*g1^7*t^7.95*y)/g2^5 + (3*g1^4*t^7.95*y)/g2^2 + (3*g2^4*t^7.96*y)/g1^2 + (2*g2^7*t^7.97*y)/g1^5 - (g1^7*t^8.19*y)/g2^17 - (2*g1^4*t^8.2*y)/g2^14 - (3*g1*t^8.2*y)/g2^11 - (t^8.21*y)/(g1^2*g2^8) - (3*t^8.21*y)/(g1^5*g2^5) - (2*t^8.22*y)/(g1^8*g2^2) - (g2*t^8.22*y)/g1^11 - (g2^4*t^8.23*y)/g1^14 - (g2^7*t^8.23*y)/g1^17 + (g1^9*t^8.99*y)/g2^9 + (4*g1^6*t^8.99*y)/g2^6 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
1239 | SU2adj1nf2 | $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1^2$ + $ M_3\phi_1\tilde{q}_2^2$ + $ M_4q_2\tilde{q}_1$ + $ M_5\phi_1\tilde{q}_1^2$ + $ M_3M_6$ + $ M_4M_6$ + $ M_6M_7$ | 0.6689 | 0.8347 | 0.8013 | [X:[], M:[0.6937, 1.3015, 0.7009, 0.7009, 0.6961, 1.2991, 0.7009], q:[0.829, 0.8218], qb:[0.4773, 0.4749], phi:[0.3493]] | t^2.08 + t^2.09 + 2*t^2.1 + t^2.86 + t^3.89 + 2*t^3.9 + t^3.91 + t^4.16 + t^4.17 + 3*t^4.18 + 2*t^4.19 + 3*t^4.21 + t^4.94 + 2*t^4.95 + 2*t^4.96 + t^5.71 + t^5.97 + t^5.98 + 4*t^5.99 - 2*t^6. - t^4.05/y - t^4.05*y | detail |