Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2292 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5\phi_1\tilde{q}_1^2$ + $ M_2M_6$ + $ M_1M_6$ + $ M_6M_7$ + $ M_8q_1\tilde{q}_2$ 0.7308 0.955 0.7652 [X:[], M:[0.6885, 0.6885, 0.6926, 0.6899, 0.6912, 1.3115, 0.6885, 0.6871], q:[0.8296, 0.8255], qb:[0.4819, 0.4833], phi:[0.3449]] [X:[], M:[[1, -5], [1, -5], [-8, 4], [-2, -2], [-5, 1], [-1, 5], [1, -5], [4, -8]], q:[[-4, 5], [5, -4]], qb:[[3, 0], [0, 3]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_8$, $ M_1$, $ M_7$, $ M_4$, $ \phi_1^2$, $ M_5$, $ M_3$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ M_8^2$, $ M_1M_8$, $ M_7M_8$, $ M_1^2$, $ M_1M_7$, $ M_7^2$, $ M_4M_8$, $ M_8\phi_1^2$, $ M_1M_4$, $ M_4M_7$, $ M_5M_8$, $ M_1\phi_1^2$, $ M_7\phi_1^2$, $ M_4^2$, $ M_1M_5$, $ M_5M_7$, $ M_3M_8$, $ M_4\phi_1^2$, $ \phi_1^4$, $ M_1M_3$, $ M_4M_5$, $ M_3M_7$, $ M_5\phi_1^2$, $ M_3M_4$, $ M_5^2$, $ M_3\phi_1^2$, $ M_3M_5$, $ M_3^2$, $ M_8\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_7\tilde{q}_1\tilde{q}_2$, $ q_1q_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_5\tilde{q}_1\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_8q_2\tilde{q}_2$, $ M_1q_2\tilde{q}_2$, $ M_7q_2\tilde{q}_2$ $M_3q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_2$ -3 t^2.06 + 5*t^2.07 + t^2.08 + t^2.9 + t^3.93 + t^4.12 + 7*t^4.13 + 15*t^4.14 + 4*t^4.15 + t^4.16 + 3*t^4.96 + 5*t^4.97 + t^5.79 + 2*t^5.99 - 3*t^6. - t^6.01 + t^6.18 + 7*t^6.19 + 34*t^6.2 + 24*t^6.21 + 16*t^6.22 + 2*t^6.23 + t^6.82 + 3*t^7.02 + 16*t^7.03 + 6*t^7.04 + 2*t^7.05 + t^7.85 - t^7.86 + 2*t^8.05 - 3*t^8.06 - 24*t^8.07 - 8*t^8.08 - t^8.09 + 8*t^8.25 + 26*t^8.26 + 76*t^8.27 + 50*t^8.28 + 40*t^8.29 + 8*t^8.3 + 2*t^8.31 + t^8.69 + t^8.88 - t^8.89 - 9*t^8.9 - t^4.03/y - (5*t^6.1)/y - (2*t^6.11)/y + (5*t^7.13)/y + (13*t^7.14)/y + (3*t^7.15)/y + (5*t^7.96)/y + (9*t^7.97)/y - (3*t^8.16)/y - (16*t^8.17)/y - (7*t^8.18)/y - (2*t^8.19)/y + (3*t^8.99)/y - t^4.03*y - 5*t^6.1*y - 2*t^6.11*y + 5*t^7.13*y + 13*t^7.14*y + 3*t^7.15*y + 5*t^7.96*y + 9*t^7.97*y - 3*t^8.16*y - 16*t^8.17*y - 7*t^8.18*y - 2*t^8.19*y + 3*t^8.99*y (g1^4*t^2.06)/g2^8 + (2*g1*t^2.07)/g2^5 + (2*t^2.07)/(g1^2*g2^2) + (g2*t^2.07)/g1^5 + (g2^4*t^2.08)/g1^8 + g1^3*g2^3*t^2.9 + (g1^5*t^3.93)/g2 + (g1^8*t^4.12)/g2^16 + (2*g1^5*t^4.13)/g2^13 + (5*g1^2*t^4.13)/g2^10 + (5*t^4.14)/(g1*g2^7) + (6*t^4.14)/(g1^4*g2^4) + (4*t^4.14)/(g1^7*g2) + (3*g2^2*t^4.15)/g1^10 + (g2^5*t^4.15)/g1^13 + (g2^8*t^4.16)/g1^16 + (g1^7*t^4.96)/g2^5 + (2*g1^4*t^4.96)/g2^2 + 3*g1*g2*t^4.97 + (g2^4*t^4.97)/g1^2 + (g2^7*t^4.97)/g1^5 + g1^6*g2^6*t^5.79 + (g1^9*t^5.99)/g2^9 + (g1^6*t^5.99)/g2^6 - 2*t^6. - (g2^3*t^6.)/g1^3 - (g2^6*t^6.01)/g1^6 + (g1^12*t^6.18)/g2^24 + (2*g1^9*t^6.19)/g2^21 + (5*g1^6*t^6.19)/g2^18 + (9*g1^3*t^6.2)/g2^15 + (12*t^6.2)/g2^12 + (13*t^6.2)/(g1^3*g2^9) + (14*t^6.21)/(g1^6*g2^6) + (10*t^6.21)/(g1^9*g2^3) + (8*t^6.22)/g1^12 + (5*g2^3*t^6.22)/g1^15 + (3*g2^6*t^6.22)/g1^18 + (g2^9*t^6.23)/g1^21 + (g2^12*t^6.23)/g1^24 + g1^8*g2^2*t^6.82 + (g1^11*t^7.02)/g2^13 + (2*g1^8*t^7.02)/g2^10 + (5*g1^5*t^7.03)/g2^7 + (5*g1^2*t^7.03)/g2^4 + (6*t^7.03)/(g1*g2) + (3*g2^2*t^7.04)/g1^4 + (3*g2^5*t^7.04)/g1^7 + (g2^8*t^7.05)/g1^10 + (g2^11*t^7.05)/g1^13 + (g1^10*t^7.85)/g2^2 - g1*g2^7*t^7.86 + (g1^13*t^8.05)/g2^17 + (g1^10*t^8.05)/g2^14 + (g1^7*t^8.06)/g2^11 - (4*g1^4*t^8.06)/g2^8 - (7*g1*t^8.07)/g2^5 - (9*t^8.07)/(g1^2*g2^2) - (8*g2*t^8.07)/g1^5 - (6*g2^4*t^8.08)/g1^8 - (2*g2^7*t^8.08)/g1^11 - (g2^10*t^8.09)/g1^14 + (g1^16*t^8.25)/g2^32 + (2*g1^13*t^8.25)/g2^29 + (5*g1^10*t^8.25)/g2^26 + (9*g1^7*t^8.26)/g2^23 + (17*g1^4*t^8.26)/g2^20 + (21*g1*t^8.27)/g2^17 + (27*t^8.27)/(g1^2*g2^14) + (28*t^8.27)/(g1^5*g2^11) + (28*t^8.28)/(g1^8*g2^8) + (22*t^8.28)/(g1^11*g2^5) + (19*t^8.29)/(g1^14*g2^2) + (12*g2*t^8.29)/g1^17 + (9*g2^4*t^8.29)/g1^20 + (5*g2^7*t^8.3)/g1^23 + (3*g2^10*t^8.3)/g1^26 + (g2^13*t^8.31)/g1^29 + (g2^16*t^8.31)/g1^32 + g1^9*g2^9*t^8.69 + (g1^12*t^8.88)/g2^6 - g1^6*t^8.89 - 4*g1^3*g2^3*t^8.9 - 3*g2^6*t^8.9 - (2*g2^9*t^8.9)/g1^3 - t^4.03/(g1*g2*y) - (g1^3*t^6.1)/(g2^9*y) - (2*t^6.1)/(g2^6*y) - (2*t^6.1)/(g1^3*g2^3*y) - t^6.11/(g1^6*y) - (g2^3*t^6.11)/(g1^9*y) + (2*g1^5*t^7.13)/(g2^13*y) + (3*g1^2*t^7.13)/(g2^10*y) + (5*t^7.14)/(g1*g2^7*y) + (4*t^7.14)/(g1^4*g2^4*y) + (4*t^7.14)/(g1^7*g2*y) + (2*g2^2*t^7.15)/(g1^10*y) + (g2^5*t^7.15)/(g1^13*y) + (2*g1^7*t^7.96)/(g2^5*y) + (3*g1^4*t^7.96)/(g2^2*y) + (4*g1*g2*t^7.97)/y + (3*g2^4*t^7.97)/(g1^2*y) + (2*g2^7*t^7.97)/(g1^5*y) - (g1^7*t^8.16)/(g2^17*y) - (2*g1^4*t^8.16)/(g2^14*y) - (5*g1*t^8.17)/(g2^11*y) - (5*t^8.17)/(g1^2*g2^8*y) - (6*t^8.17)/(g1^5*g2^5*y) - (4*t^8.18)/(g1^8*g2^2*y) - (3*g2*t^8.18)/(g1^11*y) - (g2^4*t^8.19)/(g1^14*y) - (g2^7*t^8.19)/(g1^17*y) + (g1^9*t^8.99)/(g2^9*y) + (2*g1^6*t^8.99)/(g2^6*y) - (t^4.03*y)/(g1*g2) - (g1^3*t^6.1*y)/g2^9 - (2*t^6.1*y)/g2^6 - (2*t^6.1*y)/(g1^3*g2^3) - (t^6.11*y)/g1^6 - (g2^3*t^6.11*y)/g1^9 + (2*g1^5*t^7.13*y)/g2^13 + (3*g1^2*t^7.13*y)/g2^10 + (5*t^7.14*y)/(g1*g2^7) + (4*t^7.14*y)/(g1^4*g2^4) + (4*t^7.14*y)/(g1^7*g2) + (2*g2^2*t^7.15*y)/g1^10 + (g2^5*t^7.15*y)/g1^13 + (2*g1^7*t^7.96*y)/g2^5 + (3*g1^4*t^7.96*y)/g2^2 + 4*g1*g2*t^7.97*y + (3*g2^4*t^7.97*y)/g1^2 + (2*g2^7*t^7.97*y)/g1^5 - (g1^7*t^8.16*y)/g2^17 - (2*g1^4*t^8.16*y)/g2^14 - (5*g1*t^8.17*y)/g2^11 - (5*t^8.17*y)/(g1^2*g2^8) - (6*t^8.17*y)/(g1^5*g2^5) - (4*t^8.18*y)/(g1^8*g2^2) - (3*g2*t^8.18*y)/g1^11 - (g2^4*t^8.19*y)/g1^14 - (g2^7*t^8.19*y)/g1^17 + (g1^9*t^8.99*y)/g2^9 + (2*g1^6*t^8.99*y)/g2^6


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1246 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5\phi_1\tilde{q}_1^2$ + $ M_2M_6$ + $ M_1M_6$ + $ M_6M_7$ 0.7101 0.9146 0.7764 [X:[], M:[0.6941, 0.6941, 0.6883, 0.6922, 0.6903, 1.3059, 0.6941], q:[0.8241, 0.8298], qb:[0.4818, 0.4799], phi:[0.3461]] 2*t^2.07 + 4*t^2.08 + t^2.89 + t^3.91 + t^3.93 + t^4.13 + 4*t^4.14 + 9*t^4.15 + 7*t^4.16 + t^4.95 + 4*t^4.96 + 2*t^4.97 + t^5.77 + 2*t^5.98 + 2*t^5.99 - 2*t^6. - t^4.04/y - t^4.04*y detail