Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
2284 | SU2adj1nf2 | $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ M_2q_2\tilde{q}_2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_1^2$ + $ M_4q_1q_2$ + $ M_2M_4$ + $ M_5q_1\tilde{q}_2$ + $ M_6\phi_1q_2\tilde{q}_2$ + $ M_3M_7$ | 0.6812 | 0.8512 | 0.8002 | [X:[], M:[1.0, 1.1638, 0.9339, 0.8362, 0.7701, 0.7213, 1.0661], q:[0.7787, 0.3851], qb:[0.6149, 0.4511], phi:[0.4425]] | [X:[], M:[[0], [-3], [-11], [3], [-8], [-1], [11]], q:[[1], [-4]], qb:[[4], [7]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_6$, $ M_5$, $ M_4$, $ \phi_1^2$, $ M_1$, $ M_7$, $ M_2$, $ \phi_1q_2^2$, $ \phi_1\tilde{q}_2^2$, $ q_1\tilde{q}_1$, $ M_6^2$, $ \phi_1q_2\tilde{q}_1$, $ M_5M_6$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_5^2$, $ M_4M_6$, $ M_4M_5$, $ M_6\phi_1^2$, $ M_5\phi_1^2$, $ M_4^2$, $ \phi_1\tilde{q}_1^2$, $ M_1M_6$, $ M_4\phi_1^2$, $ M_1M_5$, $ \phi_1^4$, $ M_6M_7$, $ M_1M_4$, $ M_5M_7$, $ M_2M_6$, $ M_1\phi_1^2$, $ M_4M_7$, $ M_2M_5$, $ M_6\phi_1q_2^2$, $ M_7\phi_1^2$, $ M_5\phi_1q_2^2$ | . | -1 | t^2.16 + t^2.31 + t^2.51 + t^2.66 + t^3. + t^3.2 + t^3.49 + t^3.64 + t^4.03 + t^4.18 + 2*t^4.33 + t^4.47 + t^4.53 + t^4.62 + t^4.67 + 2*t^4.82 + t^4.97 + 2*t^5.02 + 2*t^5.16 + t^5.31 + t^5.36 + t^5.51 + 2*t^5.66 + t^5.71 + t^5.8 + t^5.85 + t^5.95 - t^6. + t^6.15 + t^6.2 + t^6.29 + t^6.34 + t^6.4 + 2*t^6.49 + t^6.54 + 2*t^6.64 + 2*t^6.69 + t^6.78 + 2*t^6.84 + t^6.93 + 2*t^6.98 + t^7.03 + 2*t^7.13 + 2*t^7.18 + t^7.23 + 2*t^7.28 + 2*t^7.33 + 2*t^7.47 + 3*t^7.53 + t^7.62 + 3*t^7.67 + t^7.72 + 3*t^7.82 + 3*t^7.97 + t^8.02 + t^8.07 + t^8.11 - t^8.16 + 2*t^8.22 + t^8.26 + t^8.36 + t^8.46 + 2*t^8.56 + t^8.6 + 2*t^8.66 + t^8.71 + 2*t^8.8 + t^8.85 + t^8.91 + 2*t^8.95 - t^4.33/y - t^6.49/y - t^6.64/y - t^6.98/y + t^7.47/y + (2*t^7.67)/y + (2*t^7.82)/y + t^7.97/y + t^8.02/y + (3*t^8.16)/y + t^8.31/y + t^8.36/y + (2*t^8.51)/y + t^8.66/y + t^8.71/y + t^8.8/y + t^8.85/y - t^4.33*y - t^6.49*y - t^6.64*y - t^6.98*y + t^7.47*y + 2*t^7.67*y + 2*t^7.82*y + t^7.97*y + t^8.02*y + 3*t^8.16*y + t^8.31*y + t^8.36*y + 2*t^8.51*y + t^8.66*y + t^8.71*y + t^8.8*y + t^8.85*y | t^2.16/g1 + t^2.31/g1^8 + g1^3*t^2.51 + t^2.66/g1^4 + t^3. + g1^11*t^3.2 + t^3.49/g1^3 + t^3.64/g1^10 + g1^12*t^4.03 + g1^5*t^4.18 + (2*t^4.33)/g1^2 + t^4.47/g1^9 + g1^9*t^4.53 + t^4.62/g1^16 + g1^2*t^4.67 + (2*t^4.82)/g1^5 + t^4.97/g1^12 + 2*g1^6*t^5.02 + (2*t^5.16)/g1 + t^5.31/g1^8 + g1^10*t^5.36 + g1^3*t^5.51 + (2*t^5.66)/g1^4 + g1^14*t^5.71 + t^5.8/g1^11 + g1^7*t^5.85 + t^5.95/g1^18 - t^6. + t^6.15/g1^7 + g1^11*t^6.2 + t^6.29/g1^14 + g1^4*t^6.34 + g1^22*t^6.4 + (2*t^6.49)/g1^3 + g1^15*t^6.54 + (2*t^6.64)/g1^10 + 2*g1^8*t^6.69 + t^6.78/g1^17 + 2*g1*t^6.84 + t^6.93/g1^24 + (2*t^6.98)/g1^6 + g1^12*t^7.03 + (2*t^7.13)/g1^13 + 2*g1^5*t^7.18 + g1^23*t^7.23 + (2*t^7.28)/g1^20 + (2*t^7.33)/g1^2 + (2*t^7.47)/g1^9 + 3*g1^9*t^7.53 + t^7.62/g1^16 + 3*g1^2*t^7.67 + g1^20*t^7.72 + (3*t^7.82)/g1^5 + (3*t^7.97)/g1^12 + g1^6*t^8.02 + g1^24*t^8.07 + t^8.11/g1^19 - t^8.16/g1 + 2*g1^17*t^8.22 + t^8.26/g1^26 + g1^10*t^8.36 + t^8.46/g1^15 + 2*g1^21*t^8.56 + t^8.6/g1^22 + (2*t^8.66)/g1^4 + g1^14*t^8.71 + (2*t^8.8)/g1^11 + g1^7*t^8.85 + g1^25*t^8.91 + (2*t^8.95)/g1^18 - t^4.33/(g1^2*y) - t^6.49/(g1^3*y) - t^6.64/(g1^10*y) - t^6.98/(g1^6*y) + t^7.47/(g1^9*y) + (2*g1^2*t^7.67)/y + (2*t^7.82)/(g1^5*y) + t^7.97/(g1^12*y) + (g1^6*t^8.02)/y + (3*t^8.16)/(g1*y) + t^8.31/(g1^8*y) + (g1^10*t^8.36)/y + (2*g1^3*t^8.51)/y + t^8.66/(g1^4*y) + (g1^14*t^8.71)/y + t^8.8/(g1^11*y) + (g1^7*t^8.85)/y - (t^4.33*y)/g1^2 - (t^6.49*y)/g1^3 - (t^6.64*y)/g1^10 - (t^6.98*y)/g1^6 + (t^7.47*y)/g1^9 + 2*g1^2*t^7.67*y + (2*t^7.82*y)/g1^5 + (t^7.97*y)/g1^12 + g1^6*t^8.02*y + (3*t^8.16*y)/g1 + (t^8.31*y)/g1^8 + g1^10*t^8.36*y + 2*g1^3*t^8.51*y + (t^8.66*y)/g1^4 + g1^14*t^8.71*y + (t^8.8*y)/g1^11 + g1^7*t^8.85*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
1235 | SU2adj1nf2 | $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ M_2q_2\tilde{q}_2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_1^2$ + $ M_4q_1q_2$ + $ M_2M_4$ + $ M_5q_1\tilde{q}_2$ + $ M_6\phi_1q_2\tilde{q}_2$ | 0.6898 | 0.867 | 0.7955 | [X:[], M:[1.0, 1.149, 0.8796, 0.851, 0.7306, 0.7163], q:[0.7837, 0.3653], qb:[0.6347, 0.4857], phi:[0.4326]] | t^2.15 + t^2.19 + t^2.55 + t^2.6 + t^2.64 + t^3. + t^3.45 + t^3.49 + t^4.21 + t^4.26 + 2*t^4.3 + t^4.34 + t^4.38 + t^4.66 + t^4.7 + 2*t^4.74 + 2*t^4.79 + t^4.83 + 2*t^5.11 + 2*t^5.15 + 2*t^5.19 + t^5.23 + t^5.28 + 2*t^5.6 + 2*t^5.64 + t^5.68 - t^6. - t^4.3/y - t^4.3*y | detail |