Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2244 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{1}M_{4}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}M_{7}$ 0.6465 0.8092 0.799 [M:[1.2006, 0.8015, 0.7994, 0.7994, 0.7983, 0.8004, 1.1985], q:[0.7999, 0.3986], qb:[0.4008, 0.7999], phi:[0.4002]] [M:[[-6], [-14], [6], [6], [16], [-4], [14]], q:[[1], [13]], qb:[[-7], [1]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{5}$, ${ }M_{3}$, ${ }M_{4}$, ${ }M_{6}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{7}$, ${ }q_{1}q_{2}$, ${ }M_{1}$, ${ }M_{5}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{4}M_{5}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}M_{6}$, ${ }M_{4}M_{6}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}\phi_{1}q_{2}^{2}$, ${ }M_{5}M_{7}$, ${ }M_{5}q_{1}q_{2}$, ${ }M_{3}\phi_{1}q_{2}^{2}$, ${ }M_{4}\phi_{1}q_{2}^{2}$, ${ }M_{3}M_{7}$, ${ }M_{4}M_{7}$, ${ }M_{3}q_{1}q_{2}$, ${ }M_{4}q_{1}q_{2}$, ${ }M_{6}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{6}M_{7}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{6}q_{1}q_{2}$ ${}\phi_{1}\tilde{q}_{2}^{2}$ -1 t^2.395 + 2*t^2.398 + 2*t^2.401 + t^3.592 + 2*t^3.595 + t^3.602 + t^4.79 + 2*t^4.793 + 5*t^4.796 + 5*t^4.799 + 3*t^4.803 + t^5.987 + 4*t^5.99 + 5*t^5.994 + 3*t^5.997 - t^6. - t^6.006 + 2*t^7.185 + 4*t^7.188 + 7*t^7.191 + 7*t^7.194 + 8*t^7.197 + 4*t^7.201 + 2*t^7.204 - t^7.207 + t^8.382 + 4*t^8.385 + 8*t^8.388 + 11*t^8.392 + 4*t^8.395 - 3*t^8.398 - 7*t^8.401 - 4*t^8.405 - 2*t^8.408 - t^4.201/y - t^6.595/y - t^6.599/y - (2*t^6.602)/y + (2*t^7.793)/y + (3*t^7.796)/y + (6*t^7.799)/y + (2*t^7.803)/y + t^7.806/y + t^8.987/y + (3*t^8.99)/y + (5*t^8.994)/y + (2*t^8.997)/y - t^4.201*y - t^6.595*y - t^6.599*y - 2*t^6.602*y + 2*t^7.793*y + 3*t^7.796*y + 6*t^7.799*y + 2*t^7.803*y + t^7.806*y + t^8.987*y + 3*t^8.99*y + 5*t^8.994*y + 2*t^8.997*y g1^16*t^2.395 + 2*g1^6*t^2.398 + (2*t^2.401)/g1^4 + g1^24*t^3.592 + 2*g1^14*t^3.595 + t^3.602/g1^6 + g1^32*t^4.79 + 2*g1^22*t^4.793 + 5*g1^12*t^4.796 + 5*g1^2*t^4.799 + (3*t^4.803)/g1^8 + g1^40*t^5.987 + 4*g1^30*t^5.99 + 5*g1^20*t^5.994 + 3*g1^10*t^5.997 - t^6. - t^6.006/g1^20 + 2*g1^48*t^7.185 + 4*g1^38*t^7.188 + 7*g1^28*t^7.191 + 7*g1^18*t^7.194 + 8*g1^8*t^7.197 + (4*t^7.201)/g1^2 + (2*t^7.204)/g1^12 - t^7.207/g1^22 + g1^56*t^8.382 + 4*g1^46*t^8.385 + 8*g1^36*t^8.388 + 11*g1^26*t^8.392 + 4*g1^16*t^8.395 - 3*g1^6*t^8.398 - (7*t^8.401)/g1^4 - (4*t^8.405)/g1^14 - (2*t^8.408)/g1^24 - t^4.201/(g1^2*y) - (g1^14*t^6.595)/y - (g1^4*t^6.599)/y - (2*t^6.602)/(g1^6*y) + (2*g1^22*t^7.793)/y + (3*g1^12*t^7.796)/y + (6*g1^2*t^7.799)/y + (2*t^7.803)/(g1^8*y) + t^7.806/(g1^18*y) + (g1^40*t^8.987)/y + (3*g1^30*t^8.99)/y + (5*g1^20*t^8.994)/y + (2*g1^10*t^8.997)/y - (t^4.201*y)/g1^2 - g1^14*t^6.595*y - g1^4*t^6.599*y - (2*t^6.602*y)/g1^6 + 2*g1^22*t^7.793*y + 3*g1^12*t^7.796*y + 6*g1^2*t^7.799*y + (2*t^7.803*y)/g1^8 + (t^7.806*y)/g1^18 + g1^40*t^8.987*y + 3*g1^30*t^8.99*y + 5*g1^20*t^8.994*y + 2*g1^10*t^8.997*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
4243 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{1}M_{4}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}M_{7}$ + ${ }M_{1}M_{8}$ 0.6632 0.8397 0.7897 [M:[1.2044, 0.8102, 0.7956, 0.7956, 0.7883, 0.8029, 1.1898, 0.7956], q:[0.7993, 0.3905], qb:[0.4051, 0.7993], phi:[0.4015]] t^2.365 + 3*t^2.387 + 2*t^2.409 + t^3.548 + 2*t^3.569 + t^4.73 + 3*t^4.752 + 8*t^4.774 + 7*t^4.796 + 3*t^4.817 + t^5.913 + 5*t^5.934 + 7*t^5.956 + 2*t^5.978 - 3*t^6. - t^4.204/y - t^4.204*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1210 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{1}M_{4}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{1}$ 0.6635 0.8374 0.7923 [M:[1.1924, 0.7824, 0.8076, 0.8076, 0.8201, 0.795], q:[0.8013, 0.4164], qb:[0.3912, 0.8013], phi:[0.3975]] t^2.347 + 2*t^2.385 + 2*t^2.423 + t^2.46 + t^3.577 + t^3.653 + t^3.691 + t^4.694 + 2*t^4.732 + 5*t^4.77 + 6*t^4.808 + 5*t^4.845 + 2*t^4.883 + t^4.921 - t^4.192/y - t^4.192*y detail