Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
2176 | SU2adj1nf2 | ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}M_{6}$ + ${ }M_{7}q_{1}q_{2}$ | 0.691 | 0.8759 | 0.7889 | [M:[0.9494, 1.0925, 1.1344, 0.8656, 0.6806, 0.9075, 0.6806], q:[0.7731, 0.5462], qb:[0.5043, 0.3613], phi:[0.4538]] | [M:[[13], [-4], [5], [-5], [3], [4], [3]], q:[[-1], [-2]], qb:[[-11], [6]], phi:[[2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{5}$, ${ }M_{7}$, ${ }M_{4}$, ${ }M_{6}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{5}^{2}$, ${ }M_{5}M_{7}$, ${ }M_{7}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{4}M_{5}$, ${ }M_{4}M_{7}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{6}M_{7}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{1}M_{7}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{5}$, ${ }M_{6}^{2}$, ${ }M_{3}M_{7}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}M_{6}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{7}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{5}q_{1}\tilde{q}_{1}$, ${ }M_{7}q_{1}\tilde{q}_{1}$ | ${}$ | -2 | 2*t^2.042 + t^2.597 + 2*t^2.723 + t^2.848 + t^3.403 + t^3.529 + t^3.832 + 4*t^4.084 + t^4.387 + t^4.513 + 3*t^4.639 + 4*t^4.764 + 2*t^4.89 + t^5.194 + 2*t^5.319 + 5*t^5.445 + 3*t^5.571 + t^5.696 + t^5.874 - 2*t^6. + 7*t^6.126 + 3*t^6.251 + t^6.377 + 2*t^6.429 + t^6.555 + 4*t^6.681 + 6*t^6.806 + 4*t^6.932 + t^6.984 + t^7.058 + 2*t^7.11 + 3*t^7.236 + 4*t^7.361 + 9*t^7.487 + 6*t^7.613 + 2*t^7.738 - t^7.791 + t^7.916 - 2*t^8.042 + 14*t^8.168 + t^8.22 + 7*t^8.293 + 3*t^8.419 + t^8.471 + t^8.545 - 4*t^8.597 + t^8.723 + t^8.775 + 7*t^8.848 + t^8.9 + 9*t^8.974 - t^4.361/y - (2*t^6.403)/y - t^7.209/y + t^7.513/y + (3*t^7.639)/y + (4*t^7.764)/y + (2*t^7.89)/y + (4*t^8.319)/y + t^8.445/y + (4*t^8.571)/y + (2*t^8.874)/y - t^4.361*y - 2*t^6.403*y - t^7.209*y + t^7.513*y + 3*t^7.639*y + 4*t^7.764*y + 2*t^7.89*y + 4*t^8.319*y + t^8.445*y + 4*t^8.571*y + 2*t^8.874*y | 2*g1^3*t^2.042 + t^2.597/g1^5 + 2*g1^4*t^2.723 + g1^13*t^2.848 + g1^5*t^3.403 + g1^14*t^3.529 + t^3.832/g1^12 + 4*g1^6*t^4.084 + t^4.387/g1^20 + t^4.513/g1^11 + (3*t^4.639)/g1^2 + 4*g1^7*t^4.764 + 2*g1^16*t^4.89 + t^5.194/g1^10 + (2*t^5.319)/g1 + 5*g1^8*t^5.445 + 3*g1^17*t^5.571 + g1^26*t^5.696 + t^5.874/g1^9 - 2*t^6. + 7*g1^9*t^6.126 + 3*g1^18*t^6.251 + g1^27*t^6.377 + (2*t^6.429)/g1^17 + t^6.555/g1^8 + 4*g1*t^6.681 + 6*g1^10*t^6.806 + 4*g1^19*t^6.932 + t^6.984/g1^25 + g1^28*t^7.058 + (2*t^7.11)/g1^16 + (3*t^7.236)/g1^7 + 4*g1^2*t^7.361 + 9*g1^11*t^7.487 + 6*g1^20*t^7.613 + 2*g1^29*t^7.738 - t^7.791/g1^15 + t^7.916/g1^6 - 2*g1^3*t^8.042 + 14*g1^12*t^8.168 + t^8.22/g1^32 + 7*g1^21*t^8.293 + 3*g1^30*t^8.419 + t^8.471/g1^14 + g1^39*t^8.545 - (4*t^8.597)/g1^5 + g1^4*t^8.723 + t^8.775/g1^40 + 7*g1^13*t^8.848 + t^8.9/g1^31 + 9*g1^22*t^8.974 - (g1^2*t^4.361)/y - (2*g1^5*t^6.403)/y - (g1^15*t^7.209)/y + t^7.513/(g1^11*y) + (3*t^7.639)/(g1^2*y) + (4*g1^7*t^7.764)/y + (2*g1^16*t^7.89)/y + (4*t^8.319)/(g1*y) + (g1^8*t^8.445)/y + (4*g1^17*t^8.571)/y + (2*t^8.874)/(g1^9*y) - g1^2*t^4.361*y - 2*g1^5*t^6.403*y - g1^15*t^7.209*y + (t^7.513*y)/g1^11 + (3*t^7.639*y)/g1^2 + 4*g1^7*t^7.764*y + 2*g1^16*t^7.89*y + (4*t^8.319*y)/g1 + g1^8*t^8.445*y + 4*g1^17*t^8.571*y + (2*t^8.874*y)/g1^9 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
1136 | SU2adj1nf2 | ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}M_{6}$ | 0.6702 | 0.8351 | 0.8025 | [M:[0.9504, 1.0922, 1.1348, 0.8652, 0.6809, 0.9078], q:[0.773, 0.5461], qb:[0.5035, 0.3617], phi:[0.4539]] | t^2.043 + t^2.596 + 2*t^2.723 + t^2.851 + t^3.404 + t^3.532 + t^3.83 + t^3.957 + 2*t^4.085 + t^4.383 + t^4.511 + 2*t^4.638 + 2*t^4.766 + t^4.894 + t^5.191 + 2*t^5.319 + 4*t^5.447 + 2*t^5.574 + t^5.702 - t^6. - t^4.362/y - t^4.362*y | detail | {a: 63/94, c: 157/188, M1: 134/141, M2: 154/141, M3: 160/141, M4: 122/141, M5: 32/47, M6: 128/141, q1: 109/141, q2: 77/141, qb1: 71/141, qb2: 17/47, phi1: 64/141} |