Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
209 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_3M_4$ 0.679 0.8188 0.8292 [X:[], M:[0.6919, 1.1631, 0.9819, 1.0181], q:[0.7908, 0.5173], qb:[0.509, 0.509], phi:[0.4185]] [X:[], M:[[-8, -1, -1], [4, 4, 4], [0, -7, -7], [0, 7, 7]], q:[[1, 1, 1], [7, 0, 0]], qb:[[0, 7, 0], [0, 0, 7]], phi:[[-2, -2, -2]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_4$, $ q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ M_2$, $ q_1\tilde{q}_1$, $ q_1\tilde{q}_2$, $ M_1^2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_2^2$, $ M_1M_4$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ M_1M_2$ . -5 t^2.08 + t^3.05 + 2*t^3.08 + t^3.49 + 2*t^3.9 + t^4.15 + 3*t^4.31 + 2*t^4.33 + t^4.36 + t^5.13 + 2*t^5.15 + t^5.56 - 5*t^6. - 2*t^6.02 + t^6.11 + 2*t^6.13 + 3*t^6.16 + t^6.23 + 3*t^6.39 + t^6.54 + 2*t^6.57 - t^6.82 - 2*t^6.85 + 2*t^6.95 + 4*t^6.98 + t^7.21 - 4*t^7.26 - 2*t^7.28 + 3*t^7.36 + 8*t^7.39 + 4*t^7.41 + 2*t^7.44 + t^7.64 + 3*t^7.8 - 5*t^8.08 - 2*t^8.1 + t^8.18 + 6*t^8.21 + 3*t^8.23 + t^8.3 + 3*t^8.46 + 6*t^8.62 + 4*t^8.64 + 2*t^8.67 + 2*t^8.69 + t^8.72 + 3*t^8.95 - t^4.26/y - t^6.33/y + t^8.13/y + (2*t^8.15)/y + t^8.18/y - t^8.41/y + t^8.56/y + (2*t^8.98)/y - t^4.26*y - t^6.33*y + t^8.13*y + 2*t^8.15*y + t^8.18*y - t^8.41*y + t^8.56*y + 2*t^8.98*y t^2.08/(g1^8*g2*g3) + g2^7*g3^7*t^3.05 + g1^7*g2^7*t^3.08 + g1^7*g3^7*t^3.08 + g1^4*g2^4*g3^4*t^3.49 + g1*g2^8*g3*t^3.9 + g1*g2*g3^8*t^3.9 + t^4.15/(g1^16*g2^2*g3^2) + (g2^12*t^4.31)/(g1^2*g3^2) + (g2^5*g3^5*t^4.31)/g1^2 + (g3^12*t^4.31)/(g1^2*g2^2) + (g1^5*g2^5*t^4.33)/g3^2 + (g1^5*g3^5*t^4.33)/g2^2 + (g1^12*t^4.36)/(g2^2*g3^2) + (g2^6*g3^6*t^5.13)/g1^8 + (g2^6*t^5.15)/(g1*g3) + (g3^6*t^5.15)/(g1*g2) + (g2^3*g3^3*t^5.56)/g1^4 - 3*t^6. - (g2^7*t^6.)/g3^7 - (g3^7*t^6.)/g2^7 - (g1^7*t^6.02)/g2^7 - (g1^7*t^6.02)/g3^7 + g2^14*g3^14*t^6.11 + g1^7*g2^14*g3^7*t^6.13 + g1^7*g2^7*g3^14*t^6.13 + g1^14*g2^14*t^6.16 + g1^14*g2^7*g3^7*t^6.16 + g1^14*g3^14*t^6.16 + t^6.23/(g1^24*g2^3*g3^3) + (g2^11*t^6.39)/(g1^10*g3^3) + (g2^4*g3^4*t^6.39)/g1^10 + (g3^11*t^6.39)/(g1^10*g2^3) + g1^4*g2^11*g3^11*t^6.54 + g1^11*g2^11*g3^4*t^6.57 + g1^11*g2^4*g3^11*t^6.57 - (g2*g3*t^6.82)/g1^6 - (g1*g2*t^6.85)/g3^6 - (g1*g3*t^6.85)/g2^6 + g1*g2^15*g3^8*t^6.95 + g1*g2^8*g3^15*t^6.95 + g1^8*g2^15*g3*t^6.98 + 2*g1^8*g2^8*g3^8*t^6.98 + g1^8*g2*g3^15*t^6.98 + (g2^5*g3^5*t^7.21)/g1^16 - (g2^5*t^7.26)/(g1^2*g3^9) - (2*t^7.26)/(g1^2*g2^2*g3^2) - (g3^5*t^7.26)/(g1^2*g2^9) - (g1^5*t^7.28)/(g2^2*g3^9) - (g1^5*t^7.28)/(g2^9*g3^2) + (g2^19*g3^5*t^7.36)/g1^2 + (g2^12*g3^12*t^7.36)/g1^2 + (g2^5*g3^19*t^7.36)/g1^2 + (g1^5*g2^19*t^7.39)/g3^2 + 3*g1^5*g2^12*g3^5*t^7.39 + 3*g1^5*g2^5*g3^12*t^7.39 + (g1^5*g3^19*t^7.39)/g2^2 + (g1^12*g2^12*t^7.41)/g3^2 + 2*g1^12*g2^5*g3^5*t^7.41 + (g1^12*g3^12*t^7.41)/g2^2 + (g1^19*g2^5*t^7.44)/g3^2 + (g1^19*g3^5*t^7.44)/g2^2 + (g2^2*g3^2*t^7.64)/g1^12 + g1^2*g2^16*g3^2*t^7.8 + g1^2*g2^9*g3^9*t^7.8 + g1^2*g2^2*g3^16*t^7.8 - (g2^6*t^8.08)/(g1^8*g3^8) - (3*t^8.08)/(g1^8*g2*g3) - (g3^6*t^8.08)/(g1^8*g2^8) - t^8.1/(g1*g2*g3^8) - t^8.1/(g1*g2^8*g3) + (g2^13*g3^13*t^8.18)/g1^8 + (g2^20*t^8.21)/(g1*g3) + (2*g2^13*g3^6*t^8.21)/g1 + (2*g2^6*g3^13*t^8.21)/g1 + (g3^20*t^8.21)/(g1*g2) + (g1^6*g2^13*t^8.23)/g3 + g1^6*g2^6*g3^6*t^8.23 + (g1^6*g3^13*t^8.23)/g2 + t^8.3/(g1^32*g2^4*g3^4) + (g2^10*t^8.46)/(g1^18*g3^4) + (g2^3*g3^3*t^8.46)/g1^18 + (g3^10*t^8.46)/(g1^18*g2^4) + (g2^24*t^8.62)/(g1^4*g3^4) + (g2^17*g3^3*t^8.62)/g1^4 + (2*g2^10*g3^10*t^8.62)/g1^4 + (g2^3*g3^17*t^8.62)/g1^4 + (g3^24*t^8.62)/(g1^4*g2^4) + (g1^3*g2^17*t^8.64)/g3^4 + g1^3*g2^10*g3^3*t^8.64 + g1^3*g2^3*g3^10*t^8.64 + (g1^3*g3^17*t^8.64)/g2^4 + (g1^10*g2^10*t^8.67)/g3^4 + (g1^10*g3^10*t^8.67)/g2^4 + (g1^17*g2^3*t^8.69)/g3^4 + (g1^17*g3^3*t^8.69)/g2^4 + (g1^24*t^8.72)/(g2^4*g3^4) + t^8.95/g2^14 + t^8.95/g3^14 + t^8.95/(g2^7*g3^7) - t^4.26/(g1^2*g2^2*g3^2*y) - t^6.33/(g1^10*g2^3*g3^3*y) + (g2^6*g3^6*t^8.13)/(g1^8*y) + (g2^6*t^8.15)/(g1*g3*y) + (g3^6*t^8.15)/(g1*g2*y) + (g1^6*t^8.18)/(g2*g3*y) - t^8.41/(g1^18*g2^4*g3^4*y) + (g2^3*g3^3*t^8.56)/(g1^4*y) + (g2^7*t^8.98)/(g1^7*y) + (g3^7*t^8.98)/(g1^7*y) - (t^4.26*y)/(g1^2*g2^2*g3^2) - (t^6.33*y)/(g1^10*g2^3*g3^3) + (g2^6*g3^6*t^8.13*y)/g1^8 + (g2^6*t^8.15*y)/(g1*g3) + (g3^6*t^8.15*y)/(g1*g2) + (g1^6*t^8.18*y)/(g2*g3) - (t^8.41*y)/(g1^18*g2^4*g3^4) + (g2^3*g3^3*t^8.56*y)/g1^4 + (g2^7*t^8.98*y)/g1^7 + (g3^7*t^8.98*y)/g1^7


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
127 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ 0.6849 0.8216 0.8337 [X:[], M:[0.689, 1.2094, 0.8921], q:[0.8024, 0.5086], qb:[0.554, 0.554], phi:[0.3953]] t^2.07 + t^2.68 + 2*t^3.19 + t^3.63 + 2*t^4.07 + t^4.13 + t^4.24 + 2*t^4.37 + 3*t^4.51 + t^4.74 + 2*t^5.25 + t^5.35 + t^5.7 - 5*t^6. - t^4.19/y - t^4.19*y detail