Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
2089 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{3}M_{6}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ | 0.5546 | 0.7066 | 0.7848 | [M:[0.7611, 0.9702, 1.0298, 0.7015, 1.2985, 0.9702], q:[0.7538, 0.4851], qb:[0.2164, 0.8134], phi:[0.4328]] | [M:[[22], [-14], [14], [-6], [6], [-14]], q:[[-15], [-7]], qb:[[1], [13]], phi:[[2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{4}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}$, ${ }M_{6}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{5}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{4}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{4}M_{6}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}M_{6}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}^{3}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{6}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{6}^{2}$, ${ }\phi_{1}q_{1}^{2}$ | ${}\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}^{3}$ | -1 | t^2.105 + t^2.283 + 2*t^2.597 + 2*t^2.911 + t^3.403 + t^3.895 + 2*t^4.209 + t^4.388 + t^4.566 + 3*t^4.702 + 2*t^4.88 + 2*t^5.015 + 4*t^5.194 + 4*t^5.508 + 3*t^5.821 - t^6. + t^6.179 + 2*t^6.314 + t^6.492 + t^6.671 + 3*t^6.806 + t^6.85 + 2*t^6.985 + 3*t^7.12 + 2*t^7.163 + 3*t^7.298 + 4*t^7.477 + 4*t^7.612 + 4*t^7.791 + 3*t^7.926 + 3*t^8.105 - 3*t^8.283 + 6*t^8.418 + t^8.462 - 4*t^8.597 + 4*t^8.732 + t^8.776 - 4*t^8.911 + t^8.954 - t^4.298/y - t^6.582/y - t^6.895/y - t^7.209/y + (2*t^7.388)/y + (3*t^7.702)/y + (2*t^7.88)/y + (3*t^8.015)/y + (3*t^8.194)/y + (5*t^8.508)/y + t^8.686/y + t^8.821/y - t^8.865/y - t^4.298*y - t^6.582*y - t^6.895*y - t^7.209*y + 2*t^7.388*y + 3*t^7.702*y + 2*t^7.88*y + 3*t^8.015*y + 3*t^8.194*y + 5*t^8.508*y + t^8.686*y + t^8.821*y - t^8.865*y | t^2.105/g1^6 + g1^22*t^2.283 + 2*g1^4*t^2.597 + (2*t^2.911)/g1^14 + t^3.403/g1^4 + g1^6*t^3.895 + (2*t^4.209)/g1^12 + g1^16*t^4.388 + g1^44*t^4.566 + (3*t^4.702)/g1^2 + 2*g1^26*t^4.88 + (2*t^5.015)/g1^20 + 4*g1^8*t^5.194 + (4*t^5.508)/g1^10 + (3*t^5.821)/g1^28 - t^6. + g1^28*t^6.179 + (2*t^6.314)/g1^18 + g1^10*t^6.492 + g1^38*t^6.671 + (3*t^6.806)/g1^8 + g1^66*t^6.85 + 2*g1^20*t^6.985 + (3*t^7.12)/g1^26 + 2*g1^48*t^7.163 + 3*g1^2*t^7.298 + 4*g1^30*t^7.477 + (4*t^7.612)/g1^16 + 4*g1^12*t^7.791 + (3*t^7.926)/g1^34 + (3*t^8.105)/g1^6 - 3*g1^22*t^8.283 + (6*t^8.418)/g1^24 + g1^50*t^8.462 - 4*g1^4*t^8.597 + (4*t^8.732)/g1^42 + g1^32*t^8.776 - (4*t^8.911)/g1^14 + g1^60*t^8.954 - (g1^2*t^4.298)/y - (g1^24*t^6.582)/y - (g1^6*t^6.895)/y - t^7.209/(g1^12*y) + (2*g1^16*t^7.388)/y + (3*t^7.702)/(g1^2*y) + (2*g1^26*t^7.88)/y + (3*t^8.015)/(g1^20*y) + (3*g1^8*t^8.194)/y + (5*t^8.508)/(g1^10*y) + (g1^18*t^8.686)/y + t^8.821/(g1^28*y) - (g1^46*t^8.865)/y - g1^2*t^4.298*y - g1^24*t^6.582*y - g1^6*t^6.895*y - (t^7.209*y)/g1^12 + 2*g1^16*t^7.388*y + (3*t^7.702*y)/g1^2 + 2*g1^26*t^7.88*y + (3*t^8.015*y)/g1^20 + 3*g1^8*t^8.194*y + (5*t^8.508*y)/g1^10 + g1^18*t^8.686*y + (t^8.821*y)/g1^28 - g1^46*t^8.865*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
940 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{3}M_{6}$ | 0.6987 | 0.854 | 0.8181 | [M:[0.9091, 1.0303, 0.9697, 0.9697, 1.0303, 1.0303], q:[0.5758, 0.5152], qb:[0.4545, 0.5152], phi:[0.4848]] | t^2.727 + 2*t^2.909 + 3*t^3.091 + t^3.273 + t^4.182 + 2*t^4.364 + 4*t^4.545 + 2*t^4.727 + t^4.909 + t^5.455 + t^5.636 + 2*t^5.818 + t^6. - t^4.455/y - t^4.455*y | detail | {a: 2029/2904, c: 310/363, M1: 10/11, M2: 34/33, M3: 32/33, M4: 32/33, M5: 34/33, M6: 34/33, q1: 19/33, q2: 17/33, qb1: 5/11, qb2: 17/33, phi1: 16/33} |