Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2086 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}^{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{2}M_{6}$ + ${ }\phi_{1}q_{1}q_{2}$ + ${ }M_{1}X_{1}$ 0.604 0.7543 0.8007 [X:[1.5949], M:[0.4051, 1.2152, 0.7848, 0.8355, 1.0, 0.7848], q:[0.9051, 0.6899], qb:[0.3101, 0.4746], phi:[0.4051]] [X:[[1]], M:[[-1], [-3], [3], [-7], [0], [3]], q:[[-1], [2]], qb:[[-2], [5]], phi:[[-1]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{6}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }M_{5}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{6}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }X_{1}$, ${ }M_{3}M_{4}$, ${ }M_{4}M_{6}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{4}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{6}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{4}M_{5}$, ${ }\phi_{1}^{3}\tilde{q}_{1}^{2}$, ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ ${}\phi_{1}^{3}\tilde{q}_{1}\tilde{q}_{2}$ -1 2*t^2.354 + t^2.43 + t^2.507 + t^3. + t^3.076 + t^3.57 + t^4.063 + t^4.139 + 3*t^4.709 + 3*t^4.785 + 3*t^4.861 + t^4.937 + t^5.013 + 2*t^5.354 + 2*t^5.43 + t^5.507 + t^5.583 + t^5.924 - t^6. + t^6.076 + t^6.152 + 2*t^6.417 + 2*t^6.493 + t^6.57 - t^6.722 + 4*t^7.063 + 4*t^7.139 + 4*t^7.215 + 3*t^7.291 + 3*t^7.367 + t^7.444 + t^7.52 + 2*t^7.709 + 2*t^7.785 + 2*t^7.861 + 2*t^7.937 + t^8.013 + t^8.089 + t^8.126 + t^8.202 + t^8.278 - 4*t^8.354 - t^8.43 - t^8.507 + t^8.583 + t^8.659 + 3*t^8.772 + 3*t^8.848 + t^8.924 - t^4.215/y - t^6.57/y - t^6.646/y - t^6.722/y + (2*t^7.709)/y + (3*t^7.785)/y + (3*t^7.861)/y + t^7.937/y + (2*t^8.354)/y + (3*t^8.43)/y + (2*t^8.507)/y + t^8.583/y + t^8.924/y - t^4.215*y - t^6.57*y - t^6.646*y - t^6.722*y + 2*t^7.709*y + 3*t^7.785*y + 3*t^7.861*y + t^7.937*y + 2*t^8.354*y + 3*t^8.43*y + 2*t^8.507*y + t^8.583*y + t^8.924*y 2*g1^3*t^2.354 + t^2.43/g1^2 + t^2.507/g1^7 + t^3. + t^3.076/g1^5 + g1^2*t^3.57 + g1^9*t^4.063 + g1^4*t^4.139 + 3*g1^6*t^4.709 + 3*g1*t^4.785 + (3*t^4.861)/g1^4 + t^4.937/g1^9 + t^5.013/g1^14 + 2*g1^3*t^5.354 + (2*t^5.43)/g1^2 + t^5.507/g1^7 + t^5.583/g1^12 + g1^5*t^5.924 - t^6. + t^6.076/g1^5 + t^6.152/g1^10 + 2*g1^12*t^6.417 + 2*g1^7*t^6.493 + g1^2*t^6.57 - t^6.722/g1^8 + 4*g1^9*t^7.063 + 4*g1^4*t^7.139 + (4*t^7.215)/g1 + (3*t^7.291)/g1^6 + (3*t^7.367)/g1^11 + t^7.444/g1^16 + t^7.52/g1^21 + 2*g1^6*t^7.709 + 2*g1*t^7.785 + (2*t^7.861)/g1^4 + (2*t^7.937)/g1^9 + t^8.013/g1^14 + t^8.089/g1^19 + g1^18*t^8.126 + g1^13*t^8.202 + g1^8*t^8.278 - 4*g1^3*t^8.354 - t^8.43/g1^2 - t^8.507/g1^7 + t^8.583/g1^12 + t^8.659/g1^17 + 3*g1^15*t^8.772 + 3*g1^10*t^8.848 + g1^5*t^8.924 - t^4.215/(g1*y) - (g1^2*t^6.57)/y - t^6.646/(g1^3*y) - t^6.722/(g1^8*y) + (2*g1^6*t^7.709)/y + (3*g1*t^7.785)/y + (3*t^7.861)/(g1^4*y) + t^7.937/(g1^9*y) + (2*g1^3*t^8.354)/y + (3*t^8.43)/(g1^2*y) + (2*t^8.507)/(g1^7*y) + t^8.583/(g1^12*y) + (g1^5*t^8.924)/y - (t^4.215*y)/g1 - g1^2*t^6.57*y - (t^6.646*y)/g1^3 - (t^6.722*y)/g1^8 + 2*g1^6*t^7.709*y + 3*g1*t^7.785*y + (3*t^7.861*y)/g1^4 + (t^7.937*y)/g1^9 + 2*g1^3*t^8.354*y + (3*t^8.43*y)/g1^2 + (2*t^8.507*y)/g1^7 + (t^8.583*y)/g1^12 + g1^5*t^8.924*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
925 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}^{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{2}M_{6}$ 0.7207 0.8863 0.8132 [M:[0.8101, 1.0276, 0.9724, 0.8653, 1.0, 0.9724], q:[0.6087, 0.5812], qb:[0.4188, 0.5536], phi:[0.4594]] t^2.43 + t^2.596 + t^2.757 + 2*t^2.917 + t^3. + t^3.487 + t^3.891 + t^4.295 + t^4.378 + t^4.461 + t^4.7 + t^4.782 + t^4.861 + 2*t^4.865 + t^4.948 + t^5.026 + t^5.031 + t^5.187 + t^5.192 + 2*t^5.348 + t^5.352 + 2*t^5.513 + 2*t^5.674 + t^5.757 + 2*t^5.834 + t^5.917 - 3*t^6. - t^4.378/y - t^4.378*y detail