Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
2047 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6\phi_1q_2\tilde{q}_2$ + $ M_7q_1\tilde{q}_1$ | 0.6491 | 0.8553 | 0.7589 | [X:[], M:[0.9707, 1.0879, 1.0293, 0.9121, 0.7303, 0.755, 0.7889], q:[0.7427, 0.2866], qb:[0.4684, 0.4437], phi:[0.5146]] | [X:[], M:[[4, 4], [-12, -12], [-4, -4], [12, 12], [-5, 7], [7, -5], [-13, -1]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_5$, $ q_2\tilde{q}_2$, $ M_6$, $ q_2\tilde{q}_1$, $ M_7$, $ M_4$, $ M_3$, $ \phi_1^2$, $ \phi_1q_2^2$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ M_5^2$, $ M_5q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_5M_6$, $ M_5q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_6^2$, $ M_6q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_5M_7$, $ M_7q_2\tilde{q}_2$, $ M_6M_7$, $ \phi_1q_1q_2$, $ M_7q_2\tilde{q}_1$, $ M_7^2$, $ M_4M_5$, $ M_4q_2\tilde{q}_2$, $ M_4M_6$, $ M_4q_2\tilde{q}_1$, $ M_4M_7$, $ \phi_1q_1\tilde{q}_2$, $ M_3M_5$, $ M_5\phi_1^2$, $ M_3q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_3M_6$, $ M_6\phi_1^2$, $ M_3q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_3M_7$, $ M_7\phi_1^2$, $ M_5\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_2$, $ M_4^2$, $ M_6\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_1$, $ M_7\phi_1q_2^2$, $ M_5q_1\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$, $ M_3M_4$, $ M_4\phi_1^2$, $ M_6q_1\tilde{q}_2$ | $M_4\phi_1q_2^2$ | -3 | 2*t^2.19 + 2*t^2.27 + t^2.37 + t^2.74 + 2*t^3.09 + t^3.26 + t^3.56 + t^4.21 + t^4.28 + t^4.35 + 3*t^4.38 + 4*t^4.46 + 3*t^4.53 + 2*t^4.56 + 2*t^4.63 + t^4.73 + 2*t^4.93 + 2*t^5. + t^5.1 + 4*t^5.28 + 4*t^5.35 + 3*t^5.45 + t^5.47 + t^5.53 + t^5.63 + 2*t^5.75 + 3*t^5.82 - 3*t^6. - t^6.07 + t^6.18 + t^6.3 + 2*t^6.35 + 2*t^6.4 + 2*t^6.47 + t^6.53 + 2*t^6.55 + 5*t^6.57 + 2*t^6.62 + 7*t^6.65 + 5*t^6.72 + 3*t^6.75 + 4*t^6.8 + 3*t^6.82 + t^6.9 + 2*t^6.92 + t^6.94 + t^7. + t^7.02 - t^7.07 + t^7.09 + t^7.1 + 3*t^7.12 + 3*t^7.19 + 2*t^7.27 + 3*t^7.29 + t^7.37 + t^7.44 + 6*t^7.47 + 5*t^7.54 + 5*t^7.62 + 5*t^7.65 + 2*t^7.66 + 4*t^7.72 + 2*t^7.74 + t^7.77 + t^7.79 + 3*t^7.82 + t^7.84 + t^7.9 + 3*t^7.94 + t^8. + 3*t^8.02 + 2*t^8.09 - 6*t^8.19 + t^8.21 - 9*t^8.27 - 2*t^8.34 - t^8.37 + t^8.41 + t^8.44 + 3*t^8.49 + 3*t^8.54 + 4*t^8.56 + 3*t^8.59 + 2*t^8.62 + t^8.63 + 3*t^8.66 + t^8.71 + 3*t^8.72 - t^8.74 + 7*t^8.76 + t^8.79 + 2*t^8.81 + 10*t^8.84 + 3*t^8.88 + t^8.89 + 7*t^8.91 + 5*t^8.94 + 6*t^8.99 - t^4.54/y - t^6.73/y - t^6.81/y - t^6.91/y + t^7.38/y + (5*t^7.46)/y + t^7.53/y + (2*t^7.56)/y + t^7.63/y + (2*t^7.93)/y + (2*t^8.)/y + t^8.1/y + t^8.18/y + (5*t^8.28)/y + (5*t^8.35)/y + (4*t^8.45)/y + (2*t^8.53)/y + t^8.63/y + (2*t^8.75)/y + (4*t^8.82)/y - t^4.54*y - t^6.73*y - t^6.81*y - t^6.91*y + t^7.38*y + 5*t^7.46*y + t^7.53*y + 2*t^7.56*y + t^7.63*y + 2*t^7.93*y + 2*t^8.*y + t^8.1*y + t^8.18*y + 5*t^8.28*y + 5*t^8.35*y + 4*t^8.45*y + 2*t^8.53*y + t^8.63*y + 2*t^8.75*y + 4*t^8.82*y | (2*g2^7*t^2.19)/g1^5 + (2*g1^7*t^2.27)/g2^5 + t^2.37/(g1^13*g2) + g1^12*g2^12*t^2.74 + (2*t^3.09)/(g1^4*g2^4) + t^3.26/(g1^12*g2^12) + g1*g2^13*t^3.56 + (g2^22*t^4.21)/g1^2 + g1^10*g2^10*t^4.28 + (g1^22*t^4.35)/g2^2 + (3*g2^14*t^4.38)/g1^10 + 4*g1^2*g2^2*t^4.46 + (3*g1^14*t^4.53)/g2^10 + (2*g2^6*t^4.56)/g1^18 + (2*t^4.63)/(g1^6*g2^6) + t^4.73/(g1^26*g2^2) + 2*g1^7*g2^19*t^4.93 + 2*g1^19*g2^7*t^5. + (g2^11*t^5.1)/g1 + (4*g2^3*t^5.28)/g1^9 + (4*g1^3*t^5.35)/g2^9 + (3*t^5.45)/(g1^17*g2^5) + g1^24*g2^24*t^5.47 + t^5.53/(g1^5*g2^17) + t^5.63/(g1^25*g2^13) + (2*g2^20*t^5.75)/g1^4 + 3*g1^8*g2^8*t^5.82 - 3*t^6. - (g1^12*t^6.07)/g2^12 + t^6.18/(g1^8*g2^8) + g1^13*g2^25*t^6.3 + (2*t^6.35)/(g1^16*g2^16) + (2*g2^29*t^6.4)/g1^7 + 2*g1^5*g2^17*t^6.47 + t^6.53/(g1^24*g2^24) + 2*g1^17*g2^5*t^6.55 + (5*g2^21*t^6.57)/g1^15 + (2*g1^29*t^6.62)/g2^7 + (7*g2^9*t^6.65)/g1^3 + (5*g1^9*t^6.72)/g2^3 + (3*g2^13*t^6.75)/g1^23 + (4*g1^21*t^6.8)/g2^15 + (3*g2*t^6.82)/g1^11 + (g1*t^6.9)/g2^11 + (2*g2^5*t^6.92)/g1^31 + g1^10*g2^34*t^6.94 + t^7./(g1^19*g2^7) + g1^22*g2^22*t^7.02 - t^7.07/(g1^7*g2^19) + g1^34*g2^10*t^7.09 + t^7.1/(g1^39*g2^3) + 3*g1^2*g2^26*t^7.12 + 3*g1^14*g2^14*t^7.19 + 2*g1^26*g2^2*t^7.27 + (3*g2^18*t^7.29)/g1^6 + g1^6*g2^6*t^7.37 + (g1^18*t^7.44)/g2^6 + (6*g2^10*t^7.47)/g1^14 + (5*t^7.54)/(g1^2*g2^2) + (5*g1^10*t^7.62)/g2^14 + (5*g2^2*t^7.65)/g1^22 + 2*g1^19*g2^31*t^7.66 + (4*t^7.72)/(g1^10*g2^10) + 2*g1^31*g2^19*t^7.74 + (g2^35*t^7.77)/g1 + (g1^2*t^7.79)/g2^22 + (3*t^7.82)/(g1^30*g2^6) + g1^11*g2^23*t^7.84 + t^7.9/(g1^18*g2^18) + (3*g2^27*t^7.94)/g1^9 + t^8./(g1^38*g2^14) + 3*g1^3*g2^15*t^8.02 + 2*g1^15*g2^3*t^8.09 - (6*g2^7*t^8.19)/g1^5 + g1^36*g2^36*t^8.21 - (9*g1^7*t^8.27)/g2^5 - (2*g1^19*t^8.34)/g2^17 - t^8.37/(g1^13*g2) + (g2^44*t^8.41)/g1^4 + t^8.44/(g1*g2^13) + 3*g1^8*g2^32*t^8.49 + (3*t^8.54)/(g1^21*g2^9) + 4*g1^20*g2^20*t^8.56 + (3*g2^36*t^8.59)/g1^12 + (2*t^8.62)/(g1^9*g2^21) + g1^32*g2^8*t^8.63 + 3*g2^24*t^8.66 + (g1^44*t^8.71)/g2^4 + (3*t^8.72)/(g1^29*g2^17) - g1^12*g2^12*t^8.74 + (7*g2^28*t^8.76)/g1^20 + t^8.79/(g1^17*g2^29) + 2*g1^24*t^8.81 + (10*g2^16*t^8.84)/g1^8 + (3*g1^36*t^8.88)/g2^12 + t^8.89/(g1^37*g2^25) + 7*g1^4*g2^4*t^8.91 + (5*g2^20*t^8.94)/g1^28 + (6*g1^16*t^8.99)/g2^8 - t^4.54/(g1^2*g2^2*y) - (g2^5*t^6.73)/(g1^7*y) - (g1^5*t^6.81)/(g2^7*y) - t^6.91/(g1^15*g2^3*y) + (g2^14*t^7.38)/(g1^10*y) + (5*g1^2*g2^2*t^7.46)/y + (g1^14*t^7.53)/(g2^10*y) + (2*g2^6*t^7.56)/(g1^18*y) + t^7.63/(g1^6*g2^6*y) + (2*g1^7*g2^19*t^7.93)/y + (2*g1^19*g2^7*t^8.)/y + (g2^11*t^8.1)/(g1*y) + (g1^11*t^8.18)/(g2*y) + (5*g2^3*t^8.28)/(g1^9*y) + (5*g1^3*t^8.35)/(g2^9*y) + (4*t^8.45)/(g1^17*g2^5*y) + (2*t^8.53)/(g1^5*g2^17*y) + t^8.63/(g1^25*g2^13*y) + (2*g2^20*t^8.75)/(g1^4*y) + (4*g1^8*g2^8*t^8.82)/y - (t^4.54*y)/(g1^2*g2^2) - (g2^5*t^6.73*y)/g1^7 - (g1^5*t^6.81*y)/g2^7 - (t^6.91*y)/(g1^15*g2^3) + (g2^14*t^7.38*y)/g1^10 + 5*g1^2*g2^2*t^7.46*y + (g1^14*t^7.53*y)/g2^10 + (2*g2^6*t^7.56*y)/g1^18 + (t^7.63*y)/(g1^6*g2^6) + 2*g1^7*g2^19*t^7.93*y + 2*g1^19*g2^7*t^8.*y + (g2^11*t^8.1*y)/g1 + (g1^11*t^8.18*y)/g2 + (5*g2^3*t^8.28*y)/g1^9 + (5*g1^3*t^8.35*y)/g2^9 + (4*t^8.45*y)/(g1^17*g2^5) + (2*t^8.53*y)/(g1^5*g2^17) + (t^8.63*y)/(g1^25*g2^13) + (2*g2^20*t^8.75*y)/g1^4 + 4*g1^8*g2^8*t^8.82*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
3122 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6\phi_1q_2\tilde{q}_2$ + $ M_7q_1\tilde{q}_1$ + $ M_7\phi_1q_2^2$ | 0.6448 | 0.8521 | 0.7567 | [X:[], M:[0.9472, 1.1583, 1.0528, 0.8417, 0.7362, 0.7374, 0.8417], q:[0.7368, 0.3159], qb:[0.4215, 0.4203], phi:[0.5264]] | 4*t^2.21 + 2*t^2.53 + 2*t^3.16 + 2*t^3.47 + 2*t^4.1 + t^4.11 + 10*t^4.42 + 4*t^4.73 + 4*t^4.74 + 3*t^5.05 + 8*t^5.37 + 8*t^5.68 + t^5.69 - 2*t^6. - t^4.58/y - t^4.58*y | detail | |
3123 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6\phi_1q_2\tilde{q}_2$ + $ M_7q_1\tilde{q}_1$ + $ M_8q_1\tilde{q}_2$ | 0.6656 | 0.8837 | 0.7532 | [X:[], M:[0.9783, 1.0651, 1.0217, 0.9349, 0.7446, 0.7446, 0.788, 0.788], q:[0.7446, 0.2771], qb:[0.4674, 0.4674], phi:[0.5109]] | 4*t^2.23 + 2*t^2.36 + t^2.8 + 2*t^3.07 + t^3.2 + 3*t^4.34 + 10*t^4.47 + 8*t^4.6 + 3*t^4.73 + 4*t^5.04 + 2*t^5.17 + 8*t^5.3 + 6*t^5.43 + 2*t^5.56 + t^5.61 + t^5.87 - 5*t^6. - t^4.53/y - t^4.53*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
849 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6\phi_1q_2\tilde{q}_2$ | 0.6327 | 0.8272 | 0.7649 | [X:[], M:[0.963, 1.1111, 1.037, 0.8889, 0.7407, 0.7407], q:[0.7407, 0.2963], qb:[0.4444, 0.4444], phi:[0.5185]] | 4*t^2.22 + t^2.67 + 2*t^3.11 + t^3.33 + 2*t^3.56 + 3*t^4.22 + 10*t^4.44 + 4*t^4.89 + 9*t^5.33 + 2*t^5.56 + 9*t^5.78 - 5*t^6. - t^4.56/y - t^4.56*y | detail | {a: 205/324, c: 67/81, M1: 26/27, M2: 10/9, M3: 28/27, M4: 8/9, M5: 20/27, M6: 20/27, q1: 20/27, q2: 8/27, qb1: 4/9, qb2: 4/9, phi1: 14/27} |