Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2045 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_3M_4$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6q_1\tilde{q}_1$ 0.5862 0.7769 0.7545 [X:[], M:[1.0521, 0.8438, 1.1562, 0.8438, 0.6823, 0.7396], q:[0.763, 0.1849], qb:[0.4974, 0.6589], phi:[0.474]] [X:[], M:[[-4], [12], [-12], [12], [-14], [20]], q:[[-1], [5]], qb:[[-19], [7]], phi:[[2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ q_2\tilde{q}_1$, $ M_6$, $ M_4$, $ \phi_1q_2^2$, $ q_2\tilde{q}_2$, $ \phi_1^2$, $ M_1$, $ M_3$, $ M_5^2$, $ M_5q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_5M_6$, $ \phi_1q_1q_2$, $ M_6q_2\tilde{q}_1$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ M_6^2$, $ M_4M_5$, $ M_5\phi_1q_2^2$, $ M_4q_2\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_4M_6$, $ M_6\phi_1q_2^2$, $ M_6q_2\tilde{q}_2$, $ M_5\phi_1^2$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_4^2$, $ M_6\phi_1^2$, $ M_4\phi_1q_2^2$, $ \phi_1^2q_2^4$, $ M_4q_2\tilde{q}_2$, $ \phi_1q_2^3\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_1M_5$, $ \phi_1q_1\tilde{q}_1$, $ M_1M_6$, $ M_4\phi_1^2$, $ \phi_1^3q_2^2$, $ \phi_1^2q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_3M_5$, $ M_3q_2\tilde{q}_1$, $ M_1M_4$, $ M_3M_6$, $ \phi_1^4$, $ \phi_1q_1\tilde{q}_2$ $M_3\phi_1q_2^2$, $ M_3q_2\tilde{q}_2$ -1 2*t^2.05 + t^2.22 + 3*t^2.53 + t^2.84 + t^3.16 + t^3.47 + 3*t^4.09 + 3*t^4.27 + t^4.41 + t^4.44 + 5*t^4.58 + 3*t^4.75 + 3*t^4.89 + 6*t^5.06 + 2*t^5.2 + 5*t^5.38 + t^5.52 + 3*t^5.69 - t^6. + 4*t^6.14 + 4*t^6.31 + 2*t^6.45 + t^6.48 + 7*t^6.62 + t^6.66 + 6*t^6.8 + 5*t^6.94 + 3*t^6.97 + 9*t^7.11 + 3*t^7.25 + 6*t^7.28 + 7*t^7.42 + t^7.56 + 12*t^7.59 + 3*t^7.73 + t^7.87 + 9*t^7.91 - 4*t^8.05 + 5*t^8.19 + t^8.22 + 3*t^8.36 + 3*t^8.5 - 4*t^8.53 + 8*t^8.67 + t^8.7 + t^8.81 + t^8.84 + t^8.88 + 6*t^8.98 - t^4.42/y - t^6.47/y - t^6.64/y - t^6.95/y + t^7.09/y + (2*t^7.27)/y + (6*t^7.58)/y + (3*t^7.75)/y + (3*t^7.89)/y + (4*t^8.06)/y + (3*t^8.2)/y + (5*t^8.38)/y + t^8.52/y + (3*t^8.69)/y - t^8.86/y - t^4.42*y - t^6.47*y - t^6.64*y - t^6.95*y + t^7.09*y + 2*t^7.27*y + 6*t^7.58*y + 3*t^7.75*y + 3*t^7.89*y + 4*t^8.06*y + 3*t^8.2*y + 5*t^8.38*y + t^8.52*y + 3*t^8.69*y - t^8.86*y (2*t^2.05)/g1^14 + g1^20*t^2.22 + 3*g1^12*t^2.53 + g1^4*t^2.84 + t^3.16/g1^4 + t^3.47/g1^12 + (3*t^4.09)/g1^28 + 3*g1^6*t^4.27 + t^4.41/g1^36 + g1^40*t^4.44 + (5*t^4.58)/g1^2 + 3*g1^32*t^4.75 + (3*t^4.89)/g1^10 + 6*g1^24*t^5.06 + (2*t^5.2)/g1^18 + 5*g1^16*t^5.38 + t^5.52/g1^26 + 3*g1^8*t^5.69 - t^6. + (4*t^6.14)/g1^42 + (4*t^6.31)/g1^8 + (2*t^6.45)/g1^50 + g1^26*t^6.48 + (7*t^6.62)/g1^16 + g1^60*t^6.66 + 6*g1^18*t^6.8 + (5*t^6.94)/g1^24 + 3*g1^52*t^6.97 + 9*g1^10*t^7.11 + (3*t^7.25)/g1^32 + 6*g1^44*t^7.28 + 7*g1^2*t^7.42 + t^7.56/g1^40 + 12*g1^36*t^7.59 + (3*t^7.73)/g1^6 + t^7.87/g1^48 + 9*g1^28*t^7.91 - (4*t^8.05)/g1^14 + (5*t^8.19)/g1^56 + g1^20*t^8.22 + (3*t^8.36)/g1^22 + (3*t^8.5)/g1^64 - 4*g1^12*t^8.53 + (8*t^8.67)/g1^30 + g1^46*t^8.7 + t^8.81/g1^72 + g1^4*t^8.84 + g1^80*t^8.88 + (6*t^8.98)/g1^38 - (g1^2*t^4.42)/y - t^6.47/(g1^12*y) - (g1^22*t^6.64)/y - (g1^14*t^6.95)/y + t^7.09/(g1^28*y) + (2*g1^6*t^7.27)/y + (6*t^7.58)/(g1^2*y) + (3*g1^32*t^7.75)/y + (3*t^7.89)/(g1^10*y) + (4*g1^24*t^8.06)/y + (3*t^8.2)/(g1^18*y) + (5*g1^16*t^8.38)/y + t^8.52/(g1^26*y) + (3*g1^8*t^8.69)/y - (g1^42*t^8.86)/y - g1^2*t^4.42*y - (t^6.47*y)/g1^12 - g1^22*t^6.64*y - g1^14*t^6.95*y + (t^7.09*y)/g1^28 + 2*g1^6*t^7.27*y + (6*t^7.58*y)/g1^2 + 3*g1^32*t^7.75*y + (3*t^7.89*y)/g1^10 + 4*g1^24*t^8.06*y + (3*t^8.2*y)/g1^18 + 5*g1^16*t^8.38*y + (t^8.52*y)/g1^26 + 3*g1^8*t^8.69*y - g1^42*t^8.86*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
870 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_3M_4$ + $ M_5\phi_1q_2\tilde{q}_2$ 0.567 0.7423 0.7639 [X:[], M:[1.0488, 0.8535, 1.1465, 0.8535, 0.6709], q:[0.7622, 0.189], qb:[0.4819, 0.6646], phi:[0.4756]] 2*t^2.01 + 3*t^2.56 + t^2.85 + t^3.15 + t^3.44 + t^3.73 + 3*t^4.03 + t^4.28 + t^4.32 + 5*t^4.57 + 3*t^4.87 + 5*t^5.12 + 2*t^5.16 + 4*t^5.41 + t^5.45 + 2*t^5.71 + 2*t^5.75 - t^6. - t^4.43/y - t^4.43*y detail