Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2041 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2^2$ + $ M_6q_1\tilde{q}_2$ 0.6256 0.8271 0.7564 [X:[], M:[0.9254, 1.2239, 0.9254, 0.7761, 0.7761, 0.8358], q:[0.7313, 0.3433], qb:[0.3433, 0.4328], phi:[0.5373]] [X:[], M:[[4], [-12], [4], [12], [12], [-18]], q:[[1], [-5]], qb:[[-5], [17]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$q_2\tilde{q}_1$, $ M_4$, $ M_5$, $ q_2\tilde{q}_2$, $ M_6$, $ M_1$, $ M_3$, $ q_1\tilde{q}_1$, $ \phi_1q_2^2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_2^2$, $ M_4q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_6q_2\tilde{q}_1$, $ M_4^2$, $ M_4M_5$, $ M_5^2$, $ M_4q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_4M_6$, $ M_5M_6$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_2$, $ M_6^2$, $ M_1M_4$, $ M_3M_4$, $ M_1M_5$, $ M_3M_5$, $ \phi_1q_1\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_1M_6$, $ M_3M_6$, $ q_1q_2\tilde{q}_1^2$, $ M_1^2$, $ M_1M_3$, $ M_3^2$, $ M_4q_1\tilde{q}_1$, $ M_5q_1\tilde{q}_1$, $ M_6q_1\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1^3$ $M_4\phi_1q_2^2$, $ M_3q_1\tilde{q}_1$, $ M_4\phi_1\tilde{q}_1^2$, $ M_5\phi_1\tilde{q}_1^2$, $ \phi_1q_2^3\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1^2\tilde{q}_2$ 3 t^2.06 + 3*t^2.33 + t^2.51 + 2*t^2.78 + t^3.22 + 2*t^3.67 + 2*t^3.94 + t^4.12 + t^4.21 + 3*t^4.39 + t^4.57 + 6*t^4.66 + 5*t^4.84 + t^5.02 + 6*t^5.1 + 3*t^5.28 + 5*t^5.55 + t^5.73 + 3*t^6. + 3*t^6.18 + 4*t^6.27 + 5*t^6.45 + 3*t^6.54 + t^6.63 + 8*t^6.72 + 4*t^6.9 + 11*t^6.98 + t^7.07 + 8*t^7.16 + 6*t^7.34 + 11*t^7.43 + t^7.52 + 7*t^7.61 + 3*t^7.79 + 11*t^7.88 + 2*t^8.06 + 2*t^8.15 + 2*t^8.24 + 3*t^8.33 + t^8.42 + 2*t^8.51 + 6*t^8.6 + 3*t^8.69 + t^8.78 + 6*t^8.87 + 5*t^8.96 - t^4.61/y - t^6.94/y - t^7.12/y + (2*t^7.39)/y + t^7.57/y + (3*t^7.66)/y + (6*t^7.84)/y + (7*t^8.1)/y + (4*t^8.28)/y + (4*t^8.55)/y + (3*t^8.73)/y - t^4.61*y - t^6.94*y - t^7.12*y + 2*t^7.39*y + t^7.57*y + 3*t^7.66*y + 6*t^7.84*y + 7*t^8.1*y + 4*t^8.28*y + 4*t^8.55*y + 3*t^8.73*y t^2.06/g1^10 + 3*g1^12*t^2.33 + t^2.51/g1^18 + 2*g1^4*t^2.78 + t^3.22/g1^4 + (2*t^3.67)/g1^12 + 2*g1^10*t^3.94 + t^4.12/g1^20 + g1^32*t^4.21 + 3*g1^2*t^4.39 + t^4.57/g1^28 + 6*g1^24*t^4.66 + (5*t^4.84)/g1^6 + t^5.02/g1^36 + 6*g1^16*t^5.1 + (3*t^5.28)/g1^14 + 5*g1^8*t^5.55 + t^5.73/g1^22 + 3*t^6. + (3*t^6.18)/g1^30 + 4*g1^22*t^6.27 + (5*t^6.45)/g1^8 + 3*g1^44*t^6.54 + t^6.63/g1^38 + 8*g1^14*t^6.72 + (4*t^6.9)/g1^16 + 11*g1^36*t^6.98 + t^7.07/g1^46 + 8*g1^6*t^7.16 + (6*t^7.34)/g1^24 + 11*g1^28*t^7.43 + t^7.52/g1^54 + (7*t^7.61)/g1^2 + (3*t^7.79)/g1^32 + 11*g1^20*t^7.88 + (2*t^8.06)/g1^10 + 2*g1^42*t^8.15 + (2*t^8.24)/g1^40 + 3*g1^12*t^8.33 + g1^64*t^8.42 + (2*t^8.51)/g1^18 + 6*g1^34*t^8.6 + (3*t^8.69)/g1^48 + g1^4*t^8.78 + 6*g1^56*t^8.87 + (5*t^8.96)/g1^26 - t^4.61/(g1^2*y) - (g1^10*t^6.94)/y - t^7.12/(g1^20*y) + (2*g1^2*t^7.39)/y + t^7.57/(g1^28*y) + (3*g1^24*t^7.66)/y + (6*t^7.84)/(g1^6*y) + (7*g1^16*t^8.1)/y + (4*t^8.28)/(g1^14*y) + (4*g1^8*t^8.55)/y + (3*t^8.73)/(g1^22*y) - (t^4.61*y)/g1^2 - g1^10*t^6.94*y - (t^7.12*y)/g1^20 + 2*g1^2*t^7.39*y + (t^7.57*y)/g1^28 + 3*g1^24*t^7.66*y + (6*t^7.84*y)/g1^6 + 7*g1^16*t^8.1*y + (4*t^8.28*y)/g1^14 + 4*g1^8*t^8.55*y + (3*t^8.73*y)/g1^22


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3112 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2^2$ + $ M_6q_1\tilde{q}_2$ + $ M_7\phi_1q_2^2$ 0.6437 0.8602 0.7483 [X:[], M:[0.9226, 1.2323, 0.9226, 0.7677, 0.7677, 0.8485, 0.7677], q:[0.7306, 0.3468], qb:[0.3468, 0.4209], phi:[0.5387]] t^2.08 + 4*t^2.3 + t^2.55 + 2*t^2.77 + t^3.23 + t^3.7 + 2*t^3.92 + t^4.14 + t^4.16 + 4*t^4.38 + 10*t^4.61 + t^4.63 + 6*t^4.85 + 8*t^5.07 + t^5.09 + 3*t^5.31 + 6*t^5.54 + t^6. - t^4.62/y - t^4.62*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
854 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2^2$ 0.6126 0.807 0.7591 [X:[], M:[0.9185, 1.2444, 0.9185, 0.7556, 0.7556], q:[0.7296, 0.3518], qb:[0.3518, 0.4038], phi:[0.5407]] t^2.11 + 3*t^2.27 + 2*t^2.76 + t^3.24 + t^3.4 + 2*t^3.73 + 2*t^3.89 + t^4.04 + t^4.22 + 3*t^4.38 + 6*t^4.53 + 2*t^4.87 + 6*t^5.02 + t^5.36 + 6*t^5.51 + 3*t^5.67 + 3*t^6. - t^4.62/y - t^4.62*y detail