Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2033 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6q_1\tilde{q}_2$ 0.616 0.8158 0.7551 [X:[], M:[0.9324, 1.2027, 1.0676, 0.7973, 0.6689, 0.804], q:[0.7331, 0.3344], qb:[0.3344, 0.4629], phi:[0.5338]] [X:[], M:[[4], [-12], [-4], [12], [-10], [-18]], q:[[1], [-5]], qb:[[-5], [17]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ q_2\tilde{q}_1$, $ M_4$, $ q_2\tilde{q}_2$, $ M_6$, $ M_3$, $ \phi_1^2$, $ q_1\tilde{q}_1$, $ M_2$, $ \phi_1q_2^2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_5^2$, $ M_5q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_2^2$, $ M_4M_5$, $ M_4q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_5M_6$, $ M_6q_2\tilde{q}_1$, $ M_4^2$, $ M_4q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_4M_6$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ M_6q_2\tilde{q}_2$, $ M_6^2$, $ M_3M_5$, $ M_5\phi_1^2$, $ M_5q_1\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ q_1q_2\tilde{q}_1^2$, $ M_3M_4$, $ M_4\phi_1^2$, $ M_4q_1\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_2M_5$, $ M_3M_6$, $ M_6\phi_1^2$, $ M_5\phi_1q_2^2$, $ M_6q_1\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_1$, $ M_5\phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_1^3$ $M_4\phi_1q_2^2$, $ M_4\phi_1\tilde{q}_1^2$, $ \phi_1q_2^3\tilde{q}_2$, $ M_5\phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1^2\tilde{q}_2$ 1 2*t^2.01 + 2*t^2.39 + t^2.41 + 3*t^3.2 + 3*t^3.61 + t^3.99 + 3*t^4.01 + t^4.38 + 4*t^4.4 + 2*t^4.42 + 3*t^4.78 + 2*t^4.8 + t^4.82 + 6*t^5.21 + 5*t^5.59 + 7*t^5.61 + t^6. + 7*t^6.02 + t^6.39 + 8*t^6.41 + 3*t^6.43 + 2*t^6.77 + 4*t^6.79 + 10*t^6.81 + 2*t^6.83 + 3*t^7.18 + 14*t^7.22 + t^7.24 + t^7.58 + 5*t^7.6 + 11*t^7.62 + 5*t^7.99 + 2*t^8.01 + 12*t^8.03 + t^8.37 - 4*t^8.39 + 11*t^8.41 + 7*t^8.43 + t^8.76 + t^8.78 + 5*t^8.8 + 15*t^8.82 + 3*t^8.84 - t^4.6/y - t^6.61/y + (5*t^7.4)/y + (2*t^7.42)/y + t^7.78/y + t^7.8/y + t^8.19/y + (6*t^8.21)/y + (7*t^8.59)/y + (8*t^8.61)/y - t^4.6*y - t^6.61*y + 5*t^7.4*y + 2*t^7.42*y + t^7.78*y + t^7.8*y + t^8.19*y + 6*t^8.21*y + 7*t^8.59*y + 8*t^8.61*y (2*t^2.01)/g1^10 + 2*g1^12*t^2.39 + t^2.41/g1^18 + (3*t^3.2)/g1^4 + (3*t^3.61)/g1^12 + g1^10*t^3.99 + (3*t^4.01)/g1^20 + g1^32*t^4.38 + 4*g1^2*t^4.4 + (2*t^4.42)/g1^28 + 3*g1^24*t^4.78 + (2*t^4.8)/g1^6 + t^4.82/g1^36 + (6*t^5.21)/g1^14 + 5*g1^8*t^5.59 + (7*t^5.61)/g1^22 + t^6. + (7*t^6.02)/g1^30 + g1^22*t^6.39 + (8*t^6.41)/g1^8 + (3*t^6.43)/g1^38 + 2*g1^44*t^6.77 + 4*g1^14*t^6.79 + (10*t^6.81)/g1^16 + (2*t^6.83)/g1^46 + 3*g1^36*t^7.18 + (14*t^7.22)/g1^24 + t^7.24/g1^54 + g1^28*t^7.58 + (5*t^7.6)/g1^2 + (11*t^7.62)/g1^32 + 5*g1^20*t^7.99 + (2*t^8.01)/g1^10 + (12*t^8.03)/g1^40 + g1^42*t^8.37 - 4*g1^12*t^8.39 + (11*t^8.41)/g1^18 + (7*t^8.43)/g1^48 + g1^64*t^8.76 + g1^34*t^8.78 + 5*g1^4*t^8.8 + (15*t^8.82)/g1^26 + (3*t^8.84)/g1^56 - t^4.6/(g1^2*y) - t^6.61/(g1^12*y) + (5*g1^2*t^7.4)/y + (2*t^7.42)/(g1^28*y) + (g1^24*t^7.78)/y + t^7.8/(g1^6*y) + (g1^16*t^8.19)/y + (6*t^8.21)/(g1^14*y) + (7*g1^8*t^8.59)/y + (8*t^8.61)/(g1^22*y) - (t^4.6*y)/g1^2 - (t^6.61*y)/g1^12 + 5*g1^2*t^7.4*y + (2*t^7.42*y)/g1^28 + g1^24*t^7.78*y + (t^7.8*y)/g1^6 + g1^16*t^8.19*y + (6*t^8.21*y)/g1^14 + 7*g1^8*t^8.59*y + (8*t^8.61*y)/g1^22


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
853 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_2$ 0.6006 0.7881 0.7621 [X:[], M:[0.9263, 1.2212, 1.0737, 0.7788, 0.6844], q:[0.7316, 0.3422], qb:[0.3422, 0.4366], phi:[0.5369]] 2*t^2.05 + 2*t^2.34 + 3*t^3.22 + t^3.5 + 3*t^3.66 + t^3.95 + 3*t^4.11 + t^4.23 + 4*t^4.39 + 3*t^4.67 + 6*t^5.27 + 7*t^5.56 + 4*t^5.72 + 2*t^5.84 + t^6. - t^4.61/y - t^4.61*y detail