Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2033 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ 0.616 0.8158 0.7551 [M:[0.9324, 1.2027, 1.0676, 0.7973, 0.6689, 0.804], q:[0.7331, 0.3344], qb:[0.3344, 0.4629], phi:[0.5338]] [M:[[4], [-12], [-4], [12], [-10], [-18]], q:[[1], [-5]], qb:[[-5], [17]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{5}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{4}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{6}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}M_{6}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }M_{4}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{4}M_{6}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{5}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{4}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{5}$, ${ }M_{3}M_{6}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}q_{2}^{2}$, ${ }M_{6}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}^{3}$ ${}M_{4}\phi_{1}q_{2}^{2}$, ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }M_{5}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$ 1 2*t^2.007 + 2*t^2.392 + t^2.412 + 3*t^3.203 + 3*t^3.608 + t^3.993 + 3*t^4.013 + t^4.379 + 4*t^4.399 + 2*t^4.419 + 3*t^4.784 + 2*t^4.804 + t^4.824 + 6*t^5.209 + 5*t^5.595 + 7*t^5.615 + t^6. + 7*t^6.02 + t^6.385 + 8*t^6.405 + 3*t^6.425 + 2*t^6.771 + 4*t^6.791 + 10*t^6.811 + 2*t^6.831 + 3*t^7.176 + 14*t^7.216 + t^7.236 + t^7.581 + 5*t^7.601 + 11*t^7.621 + 5*t^7.987 + 2*t^8.007 + 12*t^8.027 + t^8.372 - 4*t^8.392 + 11*t^8.412 + 7*t^8.432 + t^8.757 + t^8.777 + 5*t^8.797 + 15*t^8.817 + 3*t^8.837 - t^4.601/y - t^6.608/y + (5*t^7.399)/y + (2*t^7.419)/y + t^7.784/y + t^7.804/y + t^8.189/y + (6*t^8.209)/y + (7*t^8.595)/y + (8*t^8.615)/y - t^4.601*y - t^6.608*y + 5*t^7.399*y + 2*t^7.419*y + t^7.784*y + t^7.804*y + t^8.189*y + 6*t^8.209*y + 7*t^8.595*y + 8*t^8.615*y (2*t^2.007)/g1^10 + 2*g1^12*t^2.392 + t^2.412/g1^18 + (3*t^3.203)/g1^4 + (3*t^3.608)/g1^12 + g1^10*t^3.993 + (3*t^4.013)/g1^20 + g1^32*t^4.379 + 4*g1^2*t^4.399 + (2*t^4.419)/g1^28 + 3*g1^24*t^4.784 + (2*t^4.804)/g1^6 + t^4.824/g1^36 + (6*t^5.209)/g1^14 + 5*g1^8*t^5.595 + (7*t^5.615)/g1^22 + t^6. + (7*t^6.02)/g1^30 + g1^22*t^6.385 + (8*t^6.405)/g1^8 + (3*t^6.425)/g1^38 + 2*g1^44*t^6.771 + 4*g1^14*t^6.791 + (10*t^6.811)/g1^16 + (2*t^6.831)/g1^46 + 3*g1^36*t^7.176 + (14*t^7.216)/g1^24 + t^7.236/g1^54 + g1^28*t^7.581 + (5*t^7.601)/g1^2 + (11*t^7.621)/g1^32 + 5*g1^20*t^7.987 + (2*t^8.007)/g1^10 + (12*t^8.027)/g1^40 + g1^42*t^8.372 - 4*g1^12*t^8.392 + (11*t^8.412)/g1^18 + (7*t^8.432)/g1^48 + g1^64*t^8.757 + g1^34*t^8.777 + 5*g1^4*t^8.797 + (15*t^8.817)/g1^26 + (3*t^8.837)/g1^56 - t^4.601/(g1^2*y) - t^6.608/(g1^12*y) + (5*g1^2*t^7.399)/y + (2*t^7.419)/(g1^28*y) + (g1^24*t^7.784)/y + t^7.804/(g1^6*y) + (g1^16*t^8.189)/y + (6*t^8.209)/(g1^14*y) + (7*g1^8*t^8.595)/y + (8*t^8.615)/(g1^22*y) - (t^4.601*y)/g1^2 - (t^6.608*y)/g1^12 + 5*g1^2*t^7.399*y + (2*t^7.419*y)/g1^28 + g1^24*t^7.784*y + (t^7.804*y)/g1^6 + g1^16*t^8.189*y + (6*t^8.209*y)/g1^14 + 7*g1^8*t^8.595*y + (8*t^8.615*y)/g1^22


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
853 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{2}$ 0.6006 0.7881 0.7621 [M:[0.9263, 1.2212, 1.0737, 0.7788, 0.6844], q:[0.7316, 0.3422], qb:[0.3422, 0.4366], phi:[0.5369]] 2*t^2.053 + 2*t^2.336 + 3*t^3.221 + t^3.504 + 3*t^3.664 + t^3.947 + 3*t^4.106 + t^4.23 + 4*t^4.389 + 3*t^4.673 + 6*t^5.274 + 7*t^5.558 + 4*t^5.717 + 2*t^5.841 + t^6. - t^4.611/y - t^4.611*y detail