Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2027 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_4M_5$ + $ M_6q_1\tilde{q}_1$ 0.5704 0.7452 0.7654 [X:[], M:[1.0541, 0.8377, 0.9459, 1.1623, 0.8377, 0.7295], q:[0.7635, 0.1824], qb:[0.507, 0.6553], phi:[0.473]] [X:[], M:[[-4], [12], [4], [-12], [12], [20]], q:[[-1], [5]], qb:[[-19], [7]], phi:[[2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$q_2\tilde{q}_1$, $ M_6$, $ M_5$, $ \phi_1q_2^2$, $ q_2\tilde{q}_2$, $ M_3$, $ \phi_1^2$, $ M_4$, $ \phi_1q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1^2$, $ \phi_1q_1q_2$, $ M_6q_2\tilde{q}_1$, $ q_1\tilde{q}_2$, $ M_6^2$, $ \phi_1\tilde{q}_1^2$, $ M_5q_2\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_1$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_5M_6$, $ M_6\phi_1q_2^2$, $ M_6q_2\tilde{q}_2$, $ M_3q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_5^2$, $ M_3M_6$, $ M_6\phi_1^2$, $ M_5\phi_1q_2^2$, $ \phi_1^2q_2^4$, $ M_5q_2\tilde{q}_2$, $ \phi_1q_2^3\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_3M_5$, $ M_5\phi_1^2$, $ M_3\phi_1q_2^2$, $ \phi_1^3q_2^2$, $ M_3q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_3^2$, $ M_4M_6$, $ M_3\phi_1^2$, $ \phi_1^4$, $ \phi_1q_1\tilde{q}_2$ $M_4\phi_1q_2^2$, $ M_4q_2\tilde{q}_2$ -1 t^2.07 + t^2.19 + 3*t^2.51 + 2*t^2.84 + t^3.49 + t^3.93 + t^4.14 + 2*t^4.26 + t^4.38 + t^4.46 + 2*t^4.58 + 3*t^4.7 + 3*t^4.91 + 7*t^5.03 + 7*t^5.35 + 2*t^5.68 - t^6. + t^6.12 + t^6.2 + t^6.32 + 3*t^6.45 + t^6.53 + t^6.57 + t^6.65 + 5*t^6.77 + 3*t^6.89 + 3*t^6.97 + 5*t^7.09 + 7*t^7.21 + t^7.3 + 3*t^7.42 + 14*t^7.54 - t^7.62 + t^7.74 + 14*t^7.86 + t^7.95 - 4*t^8.07 + 4*t^8.19 + t^8.27 + t^8.31 - t^8.39 - 6*t^8.51 + t^8.6 + 3*t^8.63 + t^8.72 + t^8.75 - 7*t^8.84 + t^8.92 + 6*t^8.96 - t^4.42/y - t^6.61/y - t^6.93/y + (4*t^7.58)/y + (3*t^7.7)/y + (3*t^7.91)/y + (5*t^8.03)/y + t^8.23/y + (6*t^8.35)/y + t^8.55/y + (2*t^8.68)/y - t^8.8/y - t^4.42*y - t^6.61*y - t^6.93*y + 4*t^7.58*y + 3*t^7.7*y + 3*t^7.91*y + 5*t^8.03*y + t^8.23*y + 6*t^8.35*y + t^8.55*y + 2*t^8.68*y - t^8.8*y t^2.07/g1^14 + g1^20*t^2.19 + 3*g1^12*t^2.51 + 2*g1^4*t^2.84 + t^3.49/g1^12 + g1^14*t^3.93 + t^4.14/g1^28 + 2*g1^6*t^4.26 + g1^40*t^4.38 + t^4.46/g1^36 + (2*t^4.58)/g1^2 + 3*g1^32*t^4.7 + (3*t^4.91)/g1^10 + 7*g1^24*t^5.03 + 7*g1^16*t^5.35 + 2*g1^8*t^5.68 - t^6. + g1^34*t^6.12 + t^6.2/g1^42 + t^6.32/g1^8 + 3*g1^26*t^6.45 + t^6.53/g1^50 + g1^60*t^6.57 + t^6.65/g1^16 + 5*g1^18*t^6.77 + 3*g1^52*t^6.89 + (3*t^6.97)/g1^24 + 5*g1^10*t^7.09 + 7*g1^44*t^7.21 + t^7.3/g1^32 + 3*g1^2*t^7.42 + 14*g1^36*t^7.54 - t^7.62/g1^40 + t^7.74/g1^6 + 14*g1^28*t^7.86 + t^7.95/g1^48 - (4*t^8.07)/g1^14 + 4*g1^20*t^8.19 + t^8.27/g1^56 + g1^54*t^8.31 - t^8.39/g1^22 - 6*g1^12*t^8.51 + t^8.6/g1^64 + 3*g1^46*t^8.63 + t^8.72/g1^30 + g1^80*t^8.75 - 7*g1^4*t^8.84 + t^8.92/g1^72 + 6*g1^38*t^8.96 - (g1^2*t^4.42)/y - (g1^22*t^6.61)/y - (g1^14*t^6.93)/y + (4*t^7.58)/(g1^2*y) + (3*g1^32*t^7.7)/y + (3*t^7.91)/(g1^10*y) + (5*g1^24*t^8.03)/y + t^8.23/(g1^18*y) + (6*g1^16*t^8.35)/y + t^8.55/(g1^26*y) + (2*g1^8*t^8.68)/y - (g1^42*t^8.8)/y - g1^2*t^4.42*y - g1^22*t^6.61*y - g1^14*t^6.93*y + (4*t^7.58*y)/g1^2 + 3*g1^32*t^7.7*y + (3*t^7.91*y)/g1^10 + 5*g1^24*t^8.03*y + (t^8.23*y)/g1^18 + 6*g1^16*t^8.35*y + (t^8.55*y)/g1^26 + 2*g1^8*t^8.68*y - g1^42*t^8.8*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
846 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_4M_5$ 0.5509 0.7087 0.7773 [X:[], M:[1.0508, 0.8475, 0.9492, 1.1525, 0.8475], q:[0.7627, 0.1865], qb:[0.4915, 0.661], phi:[0.4746]] t^2.03 + 3*t^2.54 + 2*t^2.85 + t^3.46 + t^3.76 + t^3.97 + t^4.07 + t^4.27 + t^4.37 + 2*t^4.58 + 3*t^4.88 + 5*t^5.09 + 7*t^5.39 + t^5.7 + t^5.8 - t^6. - t^4.42/y - t^4.42*y detail