Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
2027 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{6}q_{1}\tilde{q}_{1}$ 0.5704 0.7452 0.7654 [M:[1.0541, 0.8377, 0.9459, 1.1623, 0.8377, 0.7295], q:[0.7635, 0.1824], qb:[0.507, 0.6553], phi:[0.473]] [M:[[-4], [12], [4], [-12], [12], [20]], q:[[-1], [5]], qb:[[-19], [7]], phi:[[2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{1}$, ${ }M_{6}$, ${ }M_{5}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}M_{6}$, ${ }M_{6}\phi_{1}q_{2}^{2}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}^{4}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$ ${}M_{4}\phi_{1}q_{2}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$ -1 t^2.068 + t^2.189 + 3*t^2.513 + 2*t^2.838 + t^3.487 + t^3.932 + t^4.136 + 2*t^4.257 + t^4.377 + t^4.461 + 2*t^4.581 + 3*t^4.702 + 3*t^4.906 + 7*t^5.026 + 7*t^5.351 + 2*t^5.675 - t^6. + t^6.121 + t^6.204 + t^6.325 + 3*t^6.445 + t^6.529 + t^6.566 + t^6.649 + 5*t^6.77 + 3*t^6.89 + 3*t^6.974 + 5*t^7.094 + 7*t^7.215 + t^7.298 + 3*t^7.419 + 14*t^7.539 - t^7.623 + t^7.743 + 14*t^7.864 + t^7.947 - 4*t^8.068 + 4*t^8.189 + t^8.272 + t^8.309 - t^8.393 - 6*t^8.513 + t^8.597 + 3*t^8.634 + t^8.717 + t^8.754 - 7*t^8.838 + t^8.921 + 6*t^8.958 - t^4.419/y - t^6.607/y - t^6.932/y + (4*t^7.581)/y + (3*t^7.702)/y + (3*t^7.906)/y + (5*t^8.026)/y + t^8.23/y + (6*t^8.351)/y + t^8.555/y + (2*t^8.675)/y - t^8.796/y - t^4.419*y - t^6.607*y - t^6.932*y + 4*t^7.581*y + 3*t^7.702*y + 3*t^7.906*y + 5*t^8.026*y + t^8.23*y + 6*t^8.351*y + t^8.555*y + 2*t^8.675*y - t^8.796*y t^2.068/g1^14 + g1^20*t^2.189 + 3*g1^12*t^2.513 + 2*g1^4*t^2.838 + t^3.487/g1^12 + g1^14*t^3.932 + t^4.136/g1^28 + 2*g1^6*t^4.257 + g1^40*t^4.377 + t^4.461/g1^36 + (2*t^4.581)/g1^2 + 3*g1^32*t^4.702 + (3*t^4.906)/g1^10 + 7*g1^24*t^5.026 + 7*g1^16*t^5.351 + 2*g1^8*t^5.675 - t^6. + g1^34*t^6.121 + t^6.204/g1^42 + t^6.325/g1^8 + 3*g1^26*t^6.445 + t^6.529/g1^50 + g1^60*t^6.566 + t^6.649/g1^16 + 5*g1^18*t^6.77 + 3*g1^52*t^6.89 + (3*t^6.974)/g1^24 + 5*g1^10*t^7.094 + 7*g1^44*t^7.215 + t^7.298/g1^32 + 3*g1^2*t^7.419 + 14*g1^36*t^7.539 - t^7.623/g1^40 + t^7.743/g1^6 + 14*g1^28*t^7.864 + t^7.947/g1^48 - (4*t^8.068)/g1^14 + 4*g1^20*t^8.189 + t^8.272/g1^56 + g1^54*t^8.309 - t^8.393/g1^22 - 6*g1^12*t^8.513 + t^8.597/g1^64 + 3*g1^46*t^8.634 + t^8.717/g1^30 + g1^80*t^8.754 - 7*g1^4*t^8.838 + t^8.921/g1^72 + 6*g1^38*t^8.958 - (g1^2*t^4.419)/y - (g1^22*t^6.607)/y - (g1^14*t^6.932)/y + (4*t^7.581)/(g1^2*y) + (3*g1^32*t^7.702)/y + (3*t^7.906)/(g1^10*y) + (5*g1^24*t^8.026)/y + t^8.23/(g1^18*y) + (6*g1^16*t^8.351)/y + t^8.555/(g1^26*y) + (2*g1^8*t^8.675)/y - (g1^42*t^8.796)/y - g1^2*t^4.419*y - g1^22*t^6.607*y - g1^14*t^6.932*y + (4*t^7.581*y)/g1^2 + 3*g1^32*t^7.702*y + (3*t^7.906*y)/g1^10 + 5*g1^24*t^8.026*y + (t^8.23*y)/g1^18 + 6*g1^16*t^8.351*y + (t^8.555*y)/g1^26 + 2*g1^8*t^8.675*y - g1^42*t^8.796*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
846 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ 0.5509 0.7087 0.7773 [M:[1.0508, 0.8475, 0.9492, 1.1525, 0.8475], q:[0.7627, 0.1865], qb:[0.4915, 0.661], phi:[0.4746]] t^2.034 + 3*t^2.543 + 2*t^2.848 + t^3.457 + t^3.762 + t^3.966 + t^4.067 + t^4.271 + t^4.372 + 2*t^4.576 + 3*t^4.881 + 5*t^5.085 + 7*t^5.39 + t^5.695 + t^5.796 - t^6. - t^4.424/y - t^4.424*y detail