Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
2012 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6\phi_1q_2\tilde{q}_2$ + $ M_7q_1\tilde{q}_1$ | 0.6455 | 0.8475 | 0.7616 | [X:[], M:[1.0, 1.0299, 0.9402, 1.0299, 0.7372, 0.7478, 0.7073], q:[0.7575, 0.2425], qb:[0.5352, 0.5246], phi:[0.4851]] | [X:[], M:[[0, 0], [4, 4], [-8, -8], [4, 4], [-5, 3], [3, -5], [-9, -1]], q:[[1, 1], [-1, -1]], qb:[[8, 0], [0, 8]], phi:[[-2, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_7$, $ M_5$, $ M_6$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ M_3$, $ M_1$, $ M_2$, $ M_4$, $ q_1\tilde{q}_2$, $ M_7^2$, $ M_5M_7$, $ M_6M_7$, $ M_5^2$, $ M_7q_2\tilde{q}_2$, $ M_5M_6$, $ \phi_1q_1q_2$, $ M_7q_2\tilde{q}_1$, $ M_6^2$, $ M_5q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_2$, $ M_6q_2\tilde{q}_1$, $ \phi_1\tilde{q}_2^2$, $ q_2^2\tilde{q}_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ q_2^2\tilde{q}_1^2$, $ M_3M_7$, $ M_3M_5$, $ M_3M_6$, $ M_1M_7$, $ M_1M_5$, $ M_2M_7$, $ M_4M_7$, $ M_1M_6$, $ M_2M_5$, $ M_4M_5$, $ \phi_1q_1\tilde{q}_2$, $ M_2M_6$, $ M_4M_6$, $ \phi_1q_1\tilde{q}_1$, $ M_2q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ M_2q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_1$, $ M_3^2$, $ M_1M_3$, $ M_2M_3$, $ M_3M_4$ | . | -3 | t^2.12 + t^2.21 + t^2.24 + t^2.3 + t^2.33 + t^2.82 + t^3. + 2*t^3.09 + t^3.85 + t^4.24 + t^4.33 + t^4.37 + 2*t^4.42 + 2*t^4.46 + t^4.49 + t^4.51 + 2*t^4.54 + t^4.58 + 2*t^4.6 + 2*t^4.63 + 2*t^4.67 + t^4.94 + t^5.03 + t^5.06 + t^5.12 + 3*t^5.21 + t^5.24 + 3*t^5.3 + 3*t^5.33 + 2*t^5.39 + 2*t^5.42 + t^5.64 + t^5.82 + t^5.91 - 3*t^6. - t^6.03 + t^6.06 + 2*t^6.09 + t^6.15 + 3*t^6.18 + t^6.37 + t^6.46 + t^6.49 + 2*t^6.55 + t^6.58 + 2*t^6.63 + 3*t^6.67 + t^6.7 + 3*t^6.72 + t^6.73 + 2*t^6.76 + 2*t^6.79 + 2*t^6.81 + t^6.82 + 3*t^6.85 + 2*t^6.88 + 2*t^6.9 + 2*t^6.91 + 4*t^6.94 + 2*t^6.97 + 2*t^7. + t^7.06 + t^7.15 + t^7.19 + 2*t^7.24 + t^7.28 + t^7.31 + 3*t^7.33 + t^7.37 + 4*t^7.42 + 2*t^7.46 + t^7.49 + 4*t^7.51 + 3*t^7.54 + 2*t^7.58 + 3*t^7.6 + 4*t^7.63 + 3*t^7.67 + 4*t^7.69 + 3*t^7.72 + 4*t^7.76 + t^7.85 + t^7.88 + t^7.94 + 2*t^8.03 + t^8.06 - 2*t^8.12 - 3*t^8.21 - 5*t^8.24 + t^8.27 - t^8.28 - 3*t^8.33 + t^8.36 - t^8.37 + 3*t^8.39 + 2*t^8.42 + 2*t^8.45 + t^8.46 + 3*t^8.48 + t^8.49 + 3*t^8.51 + t^8.58 + t^8.61 + t^8.64 + 2*t^8.67 + t^8.7 + t^8.73 + 2*t^8.76 + 2*t^8.79 - 3*t^8.82 + 4*t^8.85 + 3*t^8.88 + 2*t^8.91 + 4*t^8.94 + 3*t^8.97 - t^4.46/y - t^6.58/y - t^6.67/y - t^6.7/y - t^7.28/y + t^7.33/y + (2*t^7.37)/y + t^7.42/y + (2*t^7.46)/y + t^7.51/y + t^7.54/y + t^7.58/y + (2*t^7.63)/y + t^7.94/y + t^8.03/y + t^8.06/y + (2*t^8.12)/y + t^8.15/y + (4*t^8.21)/y + (2*t^8.24)/y + (3*t^8.3)/y + (4*t^8.33)/y + (2*t^8.39)/y + (2*t^8.42)/y - t^8.7/y - t^8.79/y - t^8.88/y + t^8.91/y - t^8.94/y + t^8.97/y - t^4.46*y - t^6.58*y - t^6.67*y - t^6.7*y - t^7.28*y + t^7.33*y + 2*t^7.37*y + t^7.42*y + 2*t^7.46*y + t^7.51*y + t^7.54*y + t^7.58*y + 2*t^7.63*y + t^7.94*y + t^8.03*y + t^8.06*y + 2*t^8.12*y + t^8.15*y + 4*t^8.21*y + 2*t^8.24*y + 3*t^8.3*y + 4*t^8.33*y + 2*t^8.39*y + 2*t^8.42*y - t^8.7*y - t^8.79*y - t^8.88*y + t^8.91*y - t^8.94*y + t^8.97*y | t^2.12/(g1^9*g2) + (g2^3*t^2.21)/g1^5 + (g1^3*t^2.24)/g2^5 + (g2^7*t^2.3)/g1 + (g1^7*t^2.33)/g2 + t^2.82/(g1^8*g2^8) + t^3. + 2*g1^4*g2^4*t^3.09 + g1*g2^9*t^3.85 + t^4.24/(g1^18*g2^2) + (g2^2*t^4.33)/g1^14 + t^4.37/(g1^6*g2^6) + (2*g2^6*t^4.42)/g1^10 + (2*t^4.46)/(g1^2*g2^2) + (g1^6*t^4.49)/g2^10 + (g2^10*t^4.51)/g1^6 + 2*g1^2*g2^2*t^4.54 + (g1^10*t^4.58)/g2^6 + (2*g2^14*t^4.6)/g1^2 + 2*g1^6*g2^6*t^4.63 + (2*g1^14*t^4.67)/g2^2 + t^4.94/(g1^17*g2^9) + t^5.03/(g1^13*g2^5) + t^5.06/(g1^5*g2^13) + t^5.12/(g1^9*g2) + (3*g2^3*t^5.21)/g1^5 + (g1^3*t^5.24)/g2^5 + (3*g2^7*t^5.3)/g1 + (3*g1^7*t^5.33)/g2 + 2*g1^3*g2^11*t^5.39 + 2*g1^11*g2^3*t^5.42 + t^5.64/(g1^16*g2^16) + t^5.82/(g1^8*g2^8) + t^5.91/(g1^4*g2^4) - 3*t^6. - (g1^8*t^6.03)/g2^8 + (g2^12*t^6.06)/g1^4 + 2*g1^4*g2^4*t^6.09 + g2^16*t^6.15 + 3*g1^8*g2^8*t^6.18 + t^6.37/(g1^27*g2^3) + (g2*t^6.46)/g1^23 + t^6.49/(g1^15*g2^7) + (2*g2^5*t^6.55)/g1^19 + t^6.58/(g1^11*g2^3) + (2*g2^9*t^6.63)/g1^15 + (3*g2*t^6.67)/g1^7 + (g1*t^6.7)/g2^7 + (3*g2^13*t^6.72)/g1^11 + (g1^9*t^6.73)/g2^15 + (2*g2^5*t^6.76)/g1^3 + (2*g1^5*t^6.79)/g2^3 + (2*g2^17*t^6.81)/g1^7 + (g1^13*t^6.82)/g2^11 + 3*g1*g2^9*t^6.85 + 2*g1^9*g2*t^6.88 + (2*g2^21*t^6.9)/g1^3 + (2*g1^17*t^6.91)/g2^7 + 4*g1^5*g2^13*t^6.94 + 2*g1^13*g2^5*t^6.97 + (2*g1^21*t^7.)/g2^3 + t^7.06/(g1^26*g2^10) + t^7.15/(g1^22*g2^6) + t^7.19/(g1^14*g2^14) + (2*t^7.24)/(g1^18*g2^2) + t^7.28/(g1^10*g2^10) + t^7.31/(g1^2*g2^18) + (3*g2^2*t^7.33)/g1^14 + t^7.37/(g1^6*g2^6) + (4*g2^6*t^7.42)/g1^10 + (2*t^7.46)/(g1^2*g2^2) + (g1^6*t^7.49)/g2^10 + (4*g2^10*t^7.51)/g1^6 + 3*g1^2*g2^2*t^7.54 + (2*g1^10*t^7.58)/g2^6 + (3*g2^14*t^7.6)/g1^2 + 4*g1^6*g2^6*t^7.63 + (3*g1^14*t^7.67)/g2^2 + 4*g1^2*g2^18*t^7.69 + 3*g1^10*g2^10*t^7.72 + t^7.76/(g1^25*g2^17) + 3*g1^18*g2^2*t^7.76 + t^7.85/(g1^21*g2^13) + t^7.88/(g1^13*g2^21) + t^7.94/(g1^17*g2^9) + (2*t^8.03)/(g1^13*g2^5) + t^8.06/(g1^5*g2^13) - (2*t^8.12)/(g1^9*g2) - (3*g2^3*t^8.21)/g1^5 - (5*g1^3*t^8.24)/g2^5 + (g2^15*t^8.27)/g1^9 - (g1^11*t^8.28)/g2^13 - (3*g1^7*t^8.33)/g2 + (g2^19*t^8.36)/g1^5 - (g1^15*t^8.37)/g2^9 + 3*g1^3*g2^11*t^8.39 + 2*g1^11*g2^3*t^8.42 + (2*g2^23*t^8.45)/g1 + t^8.46/(g1^24*g2^24) + 3*g1^7*g2^15*t^8.48 + t^8.49/(g1^36*g2^4) + 3*g1^15*g2^7*t^8.51 + t^8.58/g1^32 + t^8.61/(g1^24*g2^8) + t^8.64/(g1^16*g2^16) + (2*g2^4*t^8.67)/g1^28 + t^8.7/(g1^20*g2^4) + t^8.73/(g1^12*g2^12) + (2*g2^8*t^8.76)/g1^24 + (2*t^8.79)/g1^16 - (3*t^8.82)/(g1^8*g2^8) + (4*g2^12*t^8.85)/g1^20 + (3*g2^4*t^8.88)/g1^12 + (2*t^8.91)/(g1^4*g2^4) + (g1^4*t^8.94)/g2^12 + (3*g2^16*t^8.94)/g1^16 + (g1^12*t^8.97)/g2^20 + (2*g2^8*t^8.97)/g1^8 - t^4.46/(g1^2*g2^2*y) - t^6.58/(g1^11*g2^3*y) - (g2*t^6.67)/(g1^7*y) - (g1*t^6.7)/(g2^7*y) - t^7.28/(g1^10*g2^10*y) + (g2^2*t^7.33)/(g1^14*y) + (2*t^7.37)/(g1^6*g2^6*y) + (g2^6*t^7.42)/(g1^10*y) + (2*t^7.46)/(g1^2*g2^2*y) + (g2^10*t^7.51)/(g1^6*y) + (g1^2*g2^2*t^7.54)/y + (g1^10*t^7.58)/(g2^6*y) + (2*g1^6*g2^6*t^7.63)/y + t^7.94/(g1^17*g2^9*y) + t^8.03/(g1^13*g2^5*y) + t^8.06/(g1^5*g2^13*y) + (2*t^8.12)/(g1^9*g2*y) + t^8.15/(g1*g2^9*y) + (4*g2^3*t^8.21)/(g1^5*y) + (2*g1^3*t^8.24)/(g2^5*y) + (3*g2^7*t^8.3)/(g1*y) + (4*g1^7*t^8.33)/(g2*y) + (2*g1^3*g2^11*t^8.39)/y + (2*g1^11*g2^3*t^8.42)/y - t^8.7/(g1^20*g2^4*y) - t^8.79/(g1^16*y) - (g2^4*t^8.88)/(g1^12*y) + t^8.91/(g1^4*g2^4*y) - (g1^4*t^8.94)/(g2^12*y) + (g2^8*t^8.97)/(g1^8*y) - (t^4.46*y)/(g1^2*g2^2) - (t^6.58*y)/(g1^11*g2^3) - (g2*t^6.67*y)/g1^7 - (g1*t^6.7*y)/g2^7 - (t^7.28*y)/(g1^10*g2^10) + (g2^2*t^7.33*y)/g1^14 + (2*t^7.37*y)/(g1^6*g2^6) + (g2^6*t^7.42*y)/g1^10 + (2*t^7.46*y)/(g1^2*g2^2) + (g2^10*t^7.51*y)/g1^6 + g1^2*g2^2*t^7.54*y + (g1^10*t^7.58*y)/g2^6 + 2*g1^6*g2^6*t^7.63*y + (t^7.94*y)/(g1^17*g2^9) + (t^8.03*y)/(g1^13*g2^5) + (t^8.06*y)/(g1^5*g2^13) + (2*t^8.12*y)/(g1^9*g2) + (t^8.15*y)/(g1*g2^9) + (4*g2^3*t^8.21*y)/g1^5 + (2*g1^3*t^8.24*y)/g2^5 + (3*g2^7*t^8.3*y)/g1 + (4*g1^7*t^8.33*y)/g2 + 2*g1^3*g2^11*t^8.39*y + 2*g1^11*g2^3*t^8.42*y - (t^8.7*y)/(g1^20*g2^4) - (t^8.79*y)/g1^16 - (g2^4*t^8.88*y)/g1^12 + (t^8.91*y)/(g1^4*g2^4) - (g1^4*t^8.94*y)/g2^12 + (g2^8*t^8.97*y)/g1^8 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
3059 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6\phi_1q_2\tilde{q}_2$ + $ M_7q_1\tilde{q}_1$ + $ M_8q_1\tilde{q}_2$ | 0.6658 | 0.8856 | 0.7518 | [X:[], M:[1.0, 1.0355, 0.929, 1.0355, 0.7411, 0.7411, 0.7056, 0.7056], q:[0.7589, 0.2411], qb:[0.5355, 0.5355], phi:[0.4823]] | 2*t^2.12 + 2*t^2.22 + 2*t^2.33 + t^2.79 + t^3. + 2*t^3.11 + 3*t^4.23 + 4*t^4.34 + 7*t^4.45 + 4*t^4.55 + 6*t^4.66 + 2*t^4.9 + 2*t^5.01 + 2*t^5.12 + 6*t^5.22 + 6*t^5.33 + 4*t^5.44 + t^5.57 + t^5.79 + t^5.89 - 5*t^6. - t^4.45/y - t^4.45*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
818 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_6\phi_1q_2\tilde{q}_2$ | 0.6252 | 0.8098 | 0.7721 | [X:[], M:[1.0, 1.0237, 0.9525, 1.0237, 0.7441, 0.7441], q:[0.7559, 0.2441], qb:[0.5237, 0.5237], phi:[0.4881]] | 2*t^2.23 + 2*t^2.3 + t^2.86 + t^3. + 2*t^3.07 + 2*t^3.84 + 3*t^4.46 + 4*t^4.54 + 6*t^4.61 + 2*t^5.09 + 2*t^5.23 + 6*t^5.3 + 4*t^5.37 + t^5.72 + t^5.86 + t^5.93 - 5*t^6. - t^4.46/y - t^4.46*y | detail |