Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1990 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{1}M_{4}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ 0.6332 0.7848 0.8069 [M:[1.1817, 0.7572, 0.8183, 0.8183, 1.2428, 0.7266], q:[0.8031, 0.4397], qb:[0.3786, 0.8031], phi:[0.3939]] [M:[[-6], [-14], [6], [6], [14], [-24]], q:[[1], [13]], qb:[[-7], [1]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{6}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }M_{4}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{5}$, ${ }q_{1}q_{2}$, ${ }M_{6}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{4}M_{6}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{6}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}\tilde{q}_{1}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{6}q_{1}q_{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ ${}\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$ 0 t^2.18 + t^2.363 + 2*t^2.455 + t^3.453 + t^3.545 + t^3.637 + 2*t^3.728 + t^4.36 + t^4.543 + 2*t^4.635 + t^4.727 + 3*t^4.818 + 3*t^4.91 + t^5.633 + t^5.725 + t^5.817 + 3*t^5.908 + 2*t^6.092 + 3*t^6.183 + t^6.54 + t^6.723 + 2*t^6.815 + 2*t^6.907 + 3*t^6.998 + 3*t^7.09 + 2*t^7.182 + 3*t^7.273 + 3*t^7.365 + 2*t^7.457 + t^7.813 + t^7.905 + t^7.997 + 3*t^8.088 + t^8.272 + 2*t^8.363 - 2*t^8.455 + 2*t^8.547 + 3*t^8.638 + t^8.72 + t^8.903 + 2*t^8.995 - t^4.182/y - t^6.362/y - t^6.545/y - t^6.637/y + t^7.543/y + (2*t^7.635)/y + t^7.727/y + (3*t^7.818)/y + t^7.91/y + t^8.002/y - t^8.542/y + t^8.633/y + t^8.817/y + (4*t^8.908)/y - t^4.182*y - t^6.362*y - t^6.545*y - t^6.637*y + t^7.543*y + 2*t^7.635*y + t^7.727*y + 3*t^7.818*y + t^7.91*y + t^8.002*y - t^8.542*y + t^8.633*y + t^8.817*y + 4*t^8.908*y t^2.18/g1^24 + t^2.363/g1^4 + 2*g1^6*t^2.455 + t^3.453/g1^16 + t^3.545/g1^6 + g1^4*t^3.637 + 2*g1^14*t^3.728 + t^4.36/g1^48 + t^4.543/g1^28 + (2*t^4.635)/g1^18 + t^4.727/g1^8 + 3*g1^2*t^4.818 + 3*g1^12*t^4.91 + t^5.633/g1^40 + t^5.725/g1^30 + t^5.817/g1^20 + (3*t^5.908)/g1^10 + 2*g1^10*t^6.092 + 3*g1^20*t^6.183 + t^6.54/g1^72 + t^6.723/g1^52 + (2*t^6.815)/g1^42 + (2*t^6.907)/g1^32 + (3*t^6.998)/g1^22 + (3*t^7.09)/g1^12 + (2*t^7.182)/g1^2 + 3*g1^8*t^7.273 + 3*g1^18*t^7.365 + 2*g1^28*t^7.457 + t^7.813/g1^64 + t^7.905/g1^54 + t^7.997/g1^44 + (3*t^8.088)/g1^34 + t^8.272/g1^14 + (2*t^8.363)/g1^4 - 2*g1^6*t^8.455 + 2*g1^16*t^8.547 + 3*g1^26*t^8.638 + t^8.72/g1^96 + t^8.903/g1^76 + (2*t^8.995)/g1^66 - t^4.182/(g1^2*y) - t^6.362/(g1^26*y) - t^6.545/(g1^6*y) - (g1^4*t^6.637)/y + t^7.543/(g1^28*y) + (2*t^7.635)/(g1^18*y) + t^7.727/(g1^8*y) + (3*g1^2*t^7.818)/y + (g1^12*t^7.91)/y + (g1^22*t^8.002)/y - t^8.542/(g1^50*y) + t^8.633/(g1^40*y) + t^8.817/(g1^20*y) + (4*t^8.908)/(g1^10*y) - (t^4.182*y)/g1^2 - (t^6.362*y)/g1^26 - (t^6.545*y)/g1^6 - g1^4*t^6.637*y + (t^7.543*y)/g1^28 + (2*t^7.635*y)/g1^18 + (t^7.727*y)/g1^8 + 3*g1^2*t^7.818*y + g1^12*t^7.91*y + g1^22*t^8.002*y - (t^8.542*y)/g1^50 + (t^8.633*y)/g1^40 + (t^8.817*y)/g1^20 + (4*t^8.908*y)/g1^10


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3043 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{1}M_{4}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ + ${ }M_{6}^{2}$ 0.5911 0.737 0.8021 [M:[1.25, 0.9167, 0.75, 0.75, 1.0833, 1.0], q:[0.7917, 0.2917], qb:[0.4583, 0.7917], phi:[0.4167]] 2*t^2.25 + t^2.5 + t^3. + 2*t^3.25 + t^3.5 + t^3.75 + t^4. + 3*t^4.5 + 3*t^4.75 + t^5. + 2*t^5.25 + 4*t^5.5 + 2*t^5.75 + t^6. - t^4.25/y - t^4.25*y detail {a: 227/384, c: 283/384, M1: 5/4, M2: 11/12, M3: 3/4, M4: 3/4, M5: 13/12, M6: 1, q1: 19/24, q2: 7/24, qb1: 11/24, qb2: 19/24, phi1: 5/12}


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
738 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{1}M_{4}$ + ${ }M_{2}M_{5}$ 0.614 0.75 0.8186 [M:[1.1914, 0.78, 0.8086, 0.8086, 1.22], q:[0.8014, 0.4186], qb:[0.39, 0.8014], phi:[0.3971]] t^2.383 + 2*t^2.426 + t^3.531 + t^3.574 + t^3.617 + 2*t^3.66 + t^3.703 + t^4.766 + 3*t^4.809 + 3*t^4.851 + t^5.957 - t^4.191/y - t^4.191*y detail