Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1965 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{4}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{6}q_{1}\tilde{q}_{1}$ 0.653 0.8337 0.7832 [M:[1.2176, 1.1088, 0.7824, 0.8912, 0.7176, 0.8912], q:[0.75, 0.4237], qb:[0.3588, 0.4676], phi:[0.5]] [M:[[2], [1], [-2], [-1], [2], [-1]], q:[[0], [-3]], qb:[[1], [2]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{5}$, ${ }M_{3}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}$, ${ }M_{6}$, ${ }\phi_{1}^{2}$, ${ }q_{1}q_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{5}M_{6}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{3}M_{6}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{5}q_{1}q_{2}$, ${ }M_{1}M_{5}$, ${ }M_{5}q_{1}\tilde{q}_{2}$ ${}M_{3}q_{1}\tilde{q}_{2}$ 0 t^2.153 + t^2.347 + t^2.479 + 2*t^2.674 + t^3. + t^3.521 + 2*t^3.653 + t^3.979 + t^4.042 + t^4.174 + 2*t^4.305 + t^4.5 + t^4.632 + t^4.695 + 3*t^4.826 + t^4.958 + 2*t^5.021 + 3*t^5.153 + 4*t^5.347 + t^5.479 + 2*t^5.674 + t^5.805 + 2*t^6.132 + 2*t^6.195 + 3*t^6.326 + t^6.389 + 3*t^6.458 + t^6.521 + 4*t^6.653 + 2*t^6.716 + 2*t^6.784 + t^6.847 + 4*t^6.979 + 2*t^7.042 + t^7.111 + 2*t^7.174 + 5*t^7.305 + t^7.437 + 3*t^7.5 + t^7.563 + 3*t^7.632 + 4*t^7.695 + 5*t^7.826 + 4*t^7.958 + 4*t^8.021 + t^8.084 - t^8.153 + t^8.216 + 2*t^8.284 + 3*t^8.347 + t^8.479 + 5*t^8.611 - 3*t^8.674 + t^8.737 + 3*t^8.805 + 3*t^8.868 + 3*t^8.937 - t^4.5/y - t^6.653/y - t^7.174/y + t^7.5/y + t^7.632/y + (4*t^7.826)/y + (2*t^8.021)/y + (3*t^8.153)/y + (3*t^8.347)/y + t^8.479/y + (3*t^8.674)/y + t^8.805/y + t^8.868/y - t^4.5*y - t^6.653*y - t^7.174*y + t^7.5*y + t^7.632*y + 4*t^7.826*y + 2*t^8.021*y + 3*t^8.153*y + 3*t^8.347*y + t^8.479*y + 3*t^8.674*y + t^8.805*y + t^8.868*y g1^2*t^2.153 + t^2.347/g1^2 + g1^3*t^2.479 + (2*t^2.674)/g1 + t^3. + t^3.521/g1^3 + 2*g1^2*t^3.653 + g1^3*t^3.979 + t^4.042/g1^6 + t^4.174/g1 + 2*g1^4*t^4.305 + t^4.5 + g1^5*t^4.632 + t^4.695/g1^4 + 3*g1*t^4.826 + g1^6*t^4.958 + (2*t^5.021)/g1^3 + 3*g1^2*t^5.153 + (4*t^5.347)/g1^2 + g1^3*t^5.479 + (2*t^5.674)/g1 + g1^4*t^5.805 + 2*g1^5*t^6.132 + (2*t^6.195)/g1^4 + 3*g1*t^6.326 + t^6.389/g1^8 + 3*g1^6*t^6.458 + t^6.521/g1^3 + 4*g1^2*t^6.653 + (2*t^6.716)/g1^7 + 2*g1^7*t^6.784 + t^6.847/g1^2 + 4*g1^3*t^6.979 + (2*t^7.042)/g1^6 + g1^8*t^7.111 + (2*t^7.174)/g1 + 5*g1^4*t^7.305 + g1^9*t^7.437 + 3*t^7.5 + t^7.563/g1^9 + 3*g1^5*t^7.632 + (4*t^7.695)/g1^4 + 5*g1*t^7.826 + 4*g1^6*t^7.958 + (4*t^8.021)/g1^3 + t^8.084/g1^12 - g1^2*t^8.153 + t^8.216/g1^7 + 2*g1^7*t^8.284 + (3*t^8.347)/g1^2 + g1^3*t^8.479 + 5*g1^8*t^8.611 - (3*t^8.674)/g1 + t^8.737/g1^10 + 3*g1^4*t^8.805 + (3*t^8.868)/g1^5 + 3*g1^9*t^8.937 - t^4.5/y - (g1^2*t^6.653)/y - t^7.174/(g1*y) + t^7.5/y + (g1^5*t^7.632)/y + (4*g1*t^7.826)/y + (2*t^8.021)/(g1^3*y) + (3*g1^2*t^8.153)/y + (3*t^8.347)/(g1^2*y) + (g1^3*t^8.479)/y + (3*t^8.674)/(g1*y) + (g1^4*t^8.805)/y + t^8.868/(g1^5*y) - t^4.5*y - g1^2*t^6.653*y - (t^7.174*y)/g1 + t^7.5*y + g1^5*t^7.632*y + 4*g1*t^7.826*y + (2*t^8.021*y)/g1^3 + 3*g1^2*t^8.153*y + (3*t^8.347*y)/g1^2 + g1^3*t^8.479*y + (3*t^8.674*y)/g1 + g1^4*t^8.805*y + (t^8.868*y)/g1^5


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
638 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{4}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{1}$ 0.6432 0.8175 0.7868 [M:[1.2117, 1.1059, 0.7883, 0.8941, 0.7117], q:[0.75, 0.4324], qb:[0.3559, 0.4617], phi:[0.5]] t^2.135 + t^2.365 + t^2.453 + t^2.682 + t^3. + t^3.318 + t^3.547 + 2*t^3.635 + t^3.953 + t^4.095 + t^4.182 + 2*t^4.27 + t^4.5 + t^4.588 + t^4.73 + 2*t^4.818 + t^4.905 + t^5.047 + 2*t^5.135 + 2*t^5.365 + 2*t^5.453 + 2*t^5.682 + 2*t^5.77 + t^6. - t^4.5/y - t^4.5*y detail