Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
196 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_1\phi_1^2$ + $ M_1\tilde{q}_1\tilde{q}_2$ + $ M_2X_1$ 0.4995 0.612 0.8162 [X:[1.4], M:[1.2, 0.6], q:[0.5, 1.1], qb:[0.3, 0.5], phi:[0.4]] [X:[[2]], M:[[0], [-2]], q:[[1], [-1]], qb:[[-1], [1]], phi:[[0]]] 1 {a: 999/2000, c: 153/250, X1: 7/5, M1: 6/5, M2: 3/5, q1: 1/2, q2: 11/10, qb1: 3/10, qb2: 1/2, phi1: 2/5}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$\phi_1^2$, $ \tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ q_1\tilde{q}_2$, $ M_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1$, $ X_1$, $ \phi_1^4$, $ q_1q_2$, $ q_2\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ \phi_1^3\tilde{q}_1^2$, $ \phi_1\tilde{q}_1^3\tilde{q}_2$, $ q_1\tilde{q}_1\tilde{q}_2^2$ $\phi_1^2\tilde{q}_1^4$, $ \phi_1^3\tilde{q}_1\tilde{q}_2$, $ q_1^2\tilde{q}_2^2$, $ \phi_1\tilde{q}_1^2\tilde{q}_2^2$ 2 2*t^2.4 + 2*t^3. + 2*t^3.6 + 2*t^4.2 + 4*t^4.8 + 2*t^5.4 + 2*t^6. + 2*t^6.6 + 6*t^7.2 + 2*t^7.8 + 3*t^8.4 - t^4.2/y + t^7.8/y + (4*t^8.4)/y - t^4.2*y + t^7.8*y + 4*t^8.4*y 2*t^2.4 + t^3./g1^2 + g1^2*t^3. + 2*t^3.6 + t^4.2/g1^2 + g1^2*t^4.2 + 4*t^4.8 + t^5.4/g1^2 + g1^2*t^5.4 + t^6./g1^4 + g1^4*t^6. + t^6.6/g1^2 + g1^2*t^6.6 + 4*t^7.2 + t^7.2/g1^4 + g1^4*t^7.2 + t^7.8/g1^2 + g1^2*t^7.8 - t^8.4 + (2*t^8.4)/g1^4 + 2*g1^4*t^8.4 - t^4.2/y + t^7.8/y + (2*t^8.4)/(g1^2*y) + (2*g1^2*t^8.4)/y - t^4.2*y + t^7.8*y + (2*t^8.4*y)/g1^2 + 2*g1^2*t^8.4*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
312 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_1\phi_1^2$ + $ M_1\tilde{q}_1\tilde{q}_2$ + $ M_2X_1$ + $ \phi_1^3\tilde{q}_1^2$ 0.4725 0.585 0.8077 [X:[1.2], M:[1.2, 0.8], q:[0.4, 1.2], qb:[0.4, 0.4], phi:[0.4]] 3*t^2.4 + 4*t^3.6 + 7*t^4.8 + 3*t^6. - t^4.2/y - t^4.2*y detail {a: 189/400, c: 117/200, X1: 6/5, M1: 6/5, M2: 4/5, q1: 2/5, q2: 6/5, qb1: 2/5, qb2: 2/5, phi1: 2/5}


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
121 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_1\phi_1^2$ 0.5427 0.6891 0.7875 [X:[], M:[1.1204, 0.7357], q:[0.6112, 0.949], qb:[0.2684, 0.4122], phi:[0.4398]] t^2.04 + t^2.21 + t^2.64 + t^2.93 + t^3.07 + 2*t^3.36 + t^3.65 + 2*t^4.08 + t^4.25 + t^4.41 + 2*t^4.68 + t^4.85 + t^4.97 + t^5.11 + t^5.14 + t^5.28 + 2*t^5.4 + 2*t^5.57 + t^5.69 + 2*t^5.86 - t^6. - t^4.32/y - t^4.32*y detail