Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1941 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{2}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ 0.5568 0.7209 0.7723 [M:[0.8489, 1.0504, 1.1511, 0.7481, 0.9496], q:[0.6618, 0.4893], qb:[0.187, 0.7626], phi:[0.4748]] [M:[[-12], [4], [12], [-20], [-4]], q:[[-7], [19]], qb:[[-5], [1]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{1}$, ${ }M_{4}$, ${ }M_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}^{3}$, ${ }M_{1}M_{4}$, ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{4}$, ${ }M_{1}M_{5}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{5}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$ ${}M_{3}\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}^{3}$ 0 t^2.029 + t^2.244 + 2*t^2.547 + 2*t^2.849 + 2*t^3.453 + t^3.971 + t^4.058 + 2*t^4.273 + t^4.36 + t^4.489 + t^4.576 + 2*t^4.791 + 3*t^4.878 + 4*t^5.093 + 5*t^5.395 + t^5.482 + 3*t^5.698 + t^6.087 + t^6.215 + 3*t^6.302 + t^6.389 + 2*t^6.518 + t^6.733 + 3*t^6.82 + 4*t^6.907 + 2*t^7.035 + 3*t^7.122 + t^7.209 + 4*t^7.337 + t^7.424 + 7*t^7.64 + 3*t^7.727 + 2*t^7.814 + 8*t^7.942 - 3*t^8.029 + t^8.116 + 4*t^8.244 + 2*t^8.331 + t^8.418 + t^8.46 - t^8.547 + t^8.721 + 2*t^8.762 - 3*t^8.849 + 2*t^8.936 + t^8.977 - t^4.424/y - t^6.669/y + (3*t^7.576)/y + (2*t^7.791)/y + (2*t^7.878)/y + (3*t^8.093)/y + t^8.18/y + (4*t^8.395)/y + (2*t^8.482)/y + (3*t^8.698)/y - t^8.913/y - t^4.424*y - t^6.669*y + 3*t^7.576*y + 2*t^7.791*y + 2*t^7.878*y + 3*t^8.093*y + t^8.18*y + 4*t^8.395*y + 2*t^8.482*y + 3*t^8.698*y - t^8.913*y g1^14*t^2.029 + t^2.244/g1^20 + (2*t^2.547)/g1^12 + (2*t^2.849)/g1^4 + 2*g1^12*t^3.453 + t^3.971/g1^14 + g1^28*t^4.058 + (2*t^4.273)/g1^6 + g1^36*t^4.36 + t^4.489/g1^40 + g1^2*t^4.576 + (2*t^4.791)/g1^32 + 3*g1^10*t^4.878 + (4*t^5.093)/g1^24 + (5*t^5.395)/g1^16 + g1^26*t^5.482 + (3*t^5.698)/g1^8 + g1^42*t^6.087 + t^6.215/g1^34 + 3*g1^8*t^6.302 + g1^50*t^6.389 + (2*t^6.518)/g1^26 + t^6.733/g1^60 + (3*t^6.82)/g1^18 + 4*g1^24*t^6.907 + (2*t^7.035)/g1^52 + (3*t^7.122)/g1^10 + g1^32*t^7.209 + (4*t^7.337)/g1^44 + t^7.424/g1^2 + (7*t^7.64)/g1^36 + 3*g1^6*t^7.727 + 2*g1^48*t^7.814 + (8*t^7.942)/g1^28 - 3*g1^14*t^8.029 + g1^56*t^8.116 + (4*t^8.244)/g1^20 + 2*g1^22*t^8.331 + g1^64*t^8.418 + t^8.46/g1^54 - t^8.547/g1^12 + g1^72*t^8.721 + (2*t^8.762)/g1^46 - (3*t^8.849)/g1^4 + 2*g1^38*t^8.936 + t^8.977/g1^80 - t^4.424/(g1^2*y) - t^6.669/(g1^22*y) + (3*g1^2*t^7.576)/y + (2*t^7.791)/(g1^32*y) + (2*g1^10*t^7.878)/y + (3*t^8.093)/(g1^24*y) + (g1^18*t^8.18)/y + (4*t^8.395)/(g1^16*y) + (2*g1^26*t^8.482)/y + (3*t^8.698)/(g1^8*y) - t^8.913/(g1^42*y) - (t^4.424*y)/g1^2 - (t^6.669*y)/g1^22 + 3*g1^2*t^7.576*y + (2*t^7.791*y)/g1^32 + 2*g1^10*t^7.878*y + (3*t^8.093*y)/g1^24 + g1^18*t^8.18*y + (4*t^8.395*y)/g1^16 + 2*g1^26*t^8.482*y + (3*t^8.698*y)/g1^8 - (t^8.913*y)/g1^42


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
584 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{2}M_{5}$ 0.6993 0.8588 0.8143 [M:[0.9384, 1.0205, 1.0616, 0.8973, 0.9795], q:[0.488, 0.5736], qb:[0.4504, 0.5291], phi:[0.4897]] t^2.692 + t^2.815 + 2*t^2.938 + t^3.051 + t^3.072 + t^3.185 + t^4.171 + t^4.284 + t^4.397 + t^4.408 + t^4.52 + t^4.541 + t^4.644 + t^4.654 + t^4.777 + t^4.911 + t^5.384 + t^5.507 + 2*t^5.63 + 2*t^5.754 + 3*t^5.877 + 2*t^5.99 - 3*t^6. - t^4.469/y - t^4.469*y detail