Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1911 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}M_{3}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ 0.6223 0.8259 0.7535 [M:[0.9307, 1.208, 0.792, 0.6733, 0.812], q:[0.7327, 0.3367], qb:[0.3367, 0.4554], phi:[0.5347]] [M:[[4], [-12], [12], [-10], [-18]], q:[[1], [-5]], qb:[[-5], [17]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{5}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}M_{5}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{5}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{5}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{4}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}q_{2}^{2}$, ${ }M_{5}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}^{3}$ ${}M_{3}\phi_{1}q_{2}^{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$ 3 2*t^2.02 + 2*t^2.376 + t^2.436 + t^2.792 + 2*t^3.208 + 3*t^3.624 + t^3.98 + 3*t^4.04 + t^4.336 + 4*t^4.396 + 2*t^4.456 + 3*t^4.752 + 4*t^4.812 + t^4.872 + 2*t^5.168 + 5*t^5.228 + 4*t^5.584 + 6*t^5.644 + 3*t^6. + 7*t^6.06 + t^6.356 + 8*t^6.416 + 3*t^6.476 + 2*t^6.712 + 5*t^6.772 + 10*t^6.832 + 2*t^6.892 + 4*t^7.128 + 3*t^7.188 + 13*t^7.248 + t^7.308 + 3*t^7.544 + 5*t^7.604 + 10*t^7.664 + 4*t^7.96 + 5*t^8.02 + 11*t^8.08 + t^8.316 + 11*t^8.436 + 7*t^8.496 + t^8.672 + t^8.732 + 3*t^8.792 + 15*t^8.852 + 3*t^8.912 - t^4.604/y - t^6.624/y + (4*t^7.396)/y + (2*t^7.456)/y + t^7.752/y + (4*t^7.812)/y + (3*t^8.168)/y + (5*t^8.228)/y + (5*t^8.584)/y + (7*t^8.644)/y - t^4.604*y - t^6.624*y + 4*t^7.396*y + 2*t^7.456*y + t^7.752*y + 4*t^7.812*y + 3*t^8.168*y + 5*t^8.228*y + 5*t^8.584*y + 7*t^8.644*y (2*t^2.02)/g1^10 + 2*g1^12*t^2.376 + t^2.436/g1^18 + g1^4*t^2.792 + (2*t^3.208)/g1^4 + (3*t^3.624)/g1^12 + g1^10*t^3.98 + (3*t^4.04)/g1^20 + g1^32*t^4.336 + 4*g1^2*t^4.396 + (2*t^4.456)/g1^28 + 3*g1^24*t^4.752 + (4*t^4.812)/g1^6 + t^4.872/g1^36 + 2*g1^16*t^5.168 + (5*t^5.228)/g1^14 + 4*g1^8*t^5.584 + (6*t^5.644)/g1^22 + 3*t^6. + (7*t^6.06)/g1^30 + g1^22*t^6.356 + (8*t^6.416)/g1^8 + (3*t^6.476)/g1^38 + 2*g1^44*t^6.712 + 5*g1^14*t^6.772 + (10*t^6.832)/g1^16 + (2*t^6.892)/g1^46 + 4*g1^36*t^7.128 + 3*g1^6*t^7.188 + (13*t^7.248)/g1^24 + t^7.308/g1^54 + 3*g1^28*t^7.544 + (5*t^7.604)/g1^2 + (10*t^7.664)/g1^32 + 4*g1^20*t^7.96 + (5*t^8.02)/g1^10 + (11*t^8.08)/g1^40 + g1^42*t^8.316 + (11*t^8.436)/g1^18 + (7*t^8.496)/g1^48 + g1^64*t^8.672 + g1^34*t^8.732 + 3*g1^4*t^8.792 + (15*t^8.852)/g1^26 + (3*t^8.912)/g1^56 - t^4.604/(g1^2*y) - t^6.624/(g1^12*y) + (4*g1^2*t^7.396)/y + (2*t^7.456)/(g1^28*y) + (g1^24*t^7.752)/y + (4*t^7.812)/(g1^6*y) + (3*g1^16*t^8.168)/y + (5*t^8.228)/(g1^14*y) + (5*g1^8*t^8.584)/y + (7*t^8.644)/(g1^22*y) - (t^4.604*y)/g1^2 - (t^6.624*y)/g1^12 + 4*g1^2*t^7.396*y + (2*t^7.456*y)/g1^28 + g1^24*t^7.752*y + (4*t^7.812*y)/g1^6 + 3*g1^16*t^8.168*y + (5*t^8.228*y)/g1^14 + 5*g1^8*t^8.584*y + (7*t^8.644*y)/g1^22


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
565 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}M_{3}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ 0.6075 0.7997 0.7596 [M:[0.9243, 1.2271, 0.7729, 0.6893], q:[0.7311, 0.3446], qb:[0.3446, 0.4283], phi:[0.5379]] 2*t^2.068 + 2*t^2.319 + t^2.773 + 2*t^3.227 + t^3.478 + 3*t^3.681 + t^3.932 + 3*t^4.136 + t^4.183 + 4*t^4.386 + 3*t^4.637 + 2*t^4.841 + 2*t^5.092 + 4*t^5.295 + 6*t^5.546 + 4*t^5.749 + 2*t^5.797 + 3*t^6. - t^4.614/y - t^4.614*y detail