Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1900 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_4\phi_1q_2^2$ + $ M_5q_1\tilde{q}_2$ 0.6188 0.8154 0.7589 [X:[], M:[0.9271, 1.2187, 0.7813, 0.7813, 0.828], q:[0.7318, 0.3411], qb:[0.3411, 0.4402], phi:[0.5364]] [X:[], M:[[4], [-12], [12], [12], [-18]], q:[[1], [-5]], qb:[[-5], [17]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$q_2\tilde{q}_1$, $ M_3$, $ M_4$, $ q_2\tilde{q}_2$, $ M_5$, $ M_1$, $ \phi_1^2$, $ q_1\tilde{q}_1$, $ \phi_1q_2^2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_2^2$, $ M_3q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_5q_2\tilde{q}_1$, $ M_3^2$, $ M_3M_4$, $ M_4^2$, $ M_3q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_3M_5$, $ M_4M_5$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ M_5^2$, $ M_1M_3$, $ M_1M_4$, $ \phi_1q_1\tilde{q}_2$, $ M_1M_5$, $ \phi_1^2q_2\tilde{q}_1$, $ q_1q_2\tilde{q}_1^2$, $ M_1^2$, $ M_3\phi_1^2$, $ M_4\phi_1^2$, $ M_3q_1\tilde{q}_1$, $ M_4q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_2$, $ M_5\phi_1^2$, $ M_5q_1\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1^3$ $M_3\phi_1q_2^2$, $ M_3\phi_1\tilde{q}_1^2$, $ M_4\phi_1\tilde{q}_1^2$, $ \phi_1q_2^3\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1^2\tilde{q}_2$ 3 t^2.05 + 3*t^2.34 + t^2.48 + t^2.78 + 2*t^3.22 + 2*t^3.66 + 2*t^3.95 + t^4.09 + t^4.25 + 3*t^4.39 + t^4.53 + 6*t^4.69 + 4*t^4.83 + t^4.97 + 3*t^5.13 + 3*t^5.27 + 6*t^5.56 + 2*t^5.7 + 3*t^6. + 3*t^6.14 + 4*t^6.3 + 5*t^6.44 + t^6.58 + 3*t^6.59 + 6*t^6.73 + 5*t^6.87 + t^7.01 + 10*t^7.03 + 7*t^7.17 + 6*t^7.31 + t^7.45 + 6*t^7.47 + 5*t^7.61 + 3*t^7.75 + 11*t^7.91 + 3*t^8.05 + 3*t^8.19 + 2*t^8.2 + t^8.34 + 4*t^8.48 + t^8.5 + 3*t^8.62 + 6*t^8.64 + 4*t^8.78 + 4*t^8.92 + 6*t^8.94 - t^4.61/y - t^6.95/y - t^7.09/y + (3*t^7.39)/y + t^7.53/y + (3*t^7.69)/y + (4*t^7.83)/y + (4*t^8.13)/y + (4*t^8.27)/y + (6*t^8.56)/y + (4*t^8.7)/y - t^4.61*y - t^6.95*y - t^7.09*y + 3*t^7.39*y + t^7.53*y + 3*t^7.69*y + 4*t^7.83*y + 4*t^8.13*y + 4*t^8.27*y + 6*t^8.56*y + 4*t^8.7*y t^2.05/g1^10 + 3*g1^12*t^2.34 + t^2.48/g1^18 + g1^4*t^2.78 + (2*t^3.22)/g1^4 + (2*t^3.66)/g1^12 + 2*g1^10*t^3.95 + t^4.09/g1^20 + g1^32*t^4.25 + 3*g1^2*t^4.39 + t^4.53/g1^28 + 6*g1^24*t^4.69 + (4*t^4.83)/g1^6 + t^4.97/g1^36 + 3*g1^16*t^5.13 + (3*t^5.27)/g1^14 + 6*g1^8*t^5.56 + (2*t^5.7)/g1^22 + 3*t^6. + (3*t^6.14)/g1^30 + 4*g1^22*t^6.3 + (5*t^6.44)/g1^8 + t^6.58/g1^38 + 3*g1^44*t^6.59 + 6*g1^14*t^6.73 + (5*t^6.87)/g1^16 + t^7.01/g1^46 + 10*g1^36*t^7.03 + 7*g1^6*t^7.17 + (6*t^7.31)/g1^24 + t^7.45/g1^54 + 6*g1^28*t^7.47 + (5*t^7.61)/g1^2 + (3*t^7.75)/g1^32 + 11*g1^20*t^7.91 + (3*t^8.05)/g1^10 + (3*t^8.19)/g1^40 + 2*g1^42*t^8.2 + g1^12*t^8.34 + (4*t^8.48)/g1^18 + g1^64*t^8.5 + (3*t^8.62)/g1^48 + 6*g1^34*t^8.64 + 4*g1^4*t^8.78 + (4*t^8.92)/g1^26 + 6*g1^56*t^8.94 - t^4.61/(g1^2*y) - (g1^10*t^6.95)/y - t^7.09/(g1^20*y) + (3*g1^2*t^7.39)/y + t^7.53/(g1^28*y) + (3*g1^24*t^7.69)/y + (4*t^7.83)/(g1^6*y) + (4*g1^16*t^8.13)/y + (4*t^8.27)/(g1^14*y) + (6*g1^8*t^8.56)/y + (4*t^8.7)/(g1^22*y) - (t^4.61*y)/g1^2 - g1^10*t^6.95*y - (t^7.09*y)/g1^20 + 3*g1^2*t^7.39*y + (t^7.53*y)/g1^28 + 3*g1^24*t^7.69*y + (4*t^7.83*y)/g1^6 + 4*g1^16*t^8.13*y + (4*t^8.27*y)/g1^14 + 6*g1^8*t^8.56*y + (4*t^8.7*y)/g1^22


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2924 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_4\phi_1q_2^2$ + $ M_5q_1\tilde{q}_2$ + $ M_6\phi_1\tilde{q}_1^2$ 0.6366 0.8478 0.7509 [X:[], M:[0.9242, 1.2275, 0.7725, 0.7725, 0.8412, 0.7725], q:[0.731, 0.3448], qb:[0.3448, 0.4277], phi:[0.5379]] t^2.07 + 4*t^2.32 + t^2.52 + t^2.77 + 2*t^3.23 + t^3.68 + 2*t^3.93 + t^4.14 + t^4.18 + 4*t^4.39 + t^4.59 + 10*t^4.64 + 5*t^4.84 + t^5.05 + 4*t^5.09 + 3*t^5.3 + 8*t^5.55 + t^5.75 + t^6. - t^4.61/y - t^4.61*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
556 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_4\phi_1q_2^2$ 0.6052 0.7938 0.7624 [X:[], M:[0.9204, 1.2388, 0.7612, 0.7612], q:[0.7301, 0.3495], qb:[0.3495, 0.4117], phi:[0.5398]] t^2.1 + 3*t^2.28 + t^2.76 + 2*t^3.24 + t^3.43 + 2*t^3.72 + 2*t^3.9 + t^4.09 + t^4.19 + 3*t^4.38 + 6*t^4.57 + t^4.86 + 3*t^5.04 + 2*t^5.34 + 7*t^5.52 + 3*t^5.71 + 3*t^6. - t^4.62/y - t^4.62*y detail