Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
190 SU2adj1nf2 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{1}\phi_{1}^{2}$ 0.5615 0.7218 0.7778 [M:[1.1317, 0.7365, 0.7365], q:[0.5853, 0.9805], qb:[0.2829, 0.4147], phi:[0.4341]] [M:[[2, 2], [1, -5], [-9, -3]], q:[[-5, -2], [6, 3]], qb:[[3, 0], [0, 3]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}^{2}$, ${ }q_{1}q_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{3}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ ${}\phi_{1}^{2}\tilde{q}_{1}^{4}$, ${ }\phi_{1}^{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ 1 t^2.093 + 2*t^2.21 + t^2.605 + 2*t^3. + 2*t^3.395 + 2*t^4.186 + 2*t^4.302 + 3*t^4.419 + 2*t^4.698 + 2*t^4.814 + 2*t^5.093 + 4*t^5.21 + 2*t^5.488 + 4*t^5.605 + t^6. + 2*t^6.278 + 4*t^6.395 + 2*t^6.512 + 4*t^6.629 + 2*t^6.79 + 2*t^6.907 + 3*t^7.024 + 2*t^7.186 + 2*t^7.302 + 6*t^7.419 + 3*t^7.581 + 2*t^7.698 + 6*t^7.814 + 3*t^8.371 + 2*t^8.488 + 3*t^8.605 + 2*t^8.722 + 5*t^8.838 + 2*t^8.883 - t^4.302/y - (2*t^6.512)/y + (2*t^7.302)/y + t^7.419/y + t^7.698/y + (2*t^7.814)/y + (4*t^8.093)/y + (4*t^8.21)/y + (2*t^8.488)/y + (6*t^8.605)/y - (3*t^8.722)/y - t^4.302*y - 2*t^6.512*y + 2*t^7.302*y + t^7.419*y + t^7.698*y + 2*t^7.814*y + 4*t^8.093*y + 4*t^8.21*y + 2*t^8.488*y + 6*t^8.605*y - 3*t^8.722*y g1^3*g2^3*t^2.093 + (g1*t^2.21)/g2^5 + t^2.21/(g1^9*g2^3) + t^2.605/(g1^2*g2^2) + (g1^5*t^3.)/g2 + (g2*t^3.)/g1^5 + 2*g1^2*g2^2*t^3.395 + 2*g1^6*g2^6*t^4.186 + t^4.302/g1^6 + (g1^4*t^4.302)/g2^2 + (g1^2*t^4.419)/g2^10 + t^4.419/(g1^8*g2^8) + t^4.419/(g1^18*g2^6) + 2*g1*g2*t^4.698 + t^4.814/(g1*g2^7) + t^4.814/(g1^11*g2^5) + g1^8*g2^2*t^5.093 + (g2^4*t^5.093)/g1^2 + (g1^6*t^5.21)/g2^6 + (2*t^5.21)/(g1^4*g2^4) + t^5.21/(g1^14*g2^2) + 2*g1^5*g2^5*t^5.488 + (2*g1^3*t^5.605)/g2^3 + (2*t^5.605)/(g1^7*g2) - t^6. + (g1^10*t^6.)/g2^2 + (g2^2*t^6.)/g1^10 + 2*g1^9*g2^9*t^6.278 + 2*g1^7*g2*t^6.395 + (2*g2^3*t^6.395)/g1^3 + (g1^5*t^6.512)/g2^7 + t^6.512/(g1^15*g2^3) + (g1^3*t^6.629)/g2^15 + t^6.629/(g1^7*g2^13) + t^6.629/(g1^17*g2^11) + t^6.629/(g1^27*g2^9) + 2*g1^4*g2^4*t^6.79 + (g1^2*t^6.907)/g2^4 + t^6.907/(g1^8*g2^2) + t^7.024/g2^12 + t^7.024/(g1^10*g2^10) + t^7.024/(g1^20*g2^8) + g1^11*g2^5*t^7.186 + g1*g2^7*t^7.186 + (g1^9*t^7.302)/g2^3 + (g2*t^7.302)/g1^11 + (g1^7*t^7.419)/g2^11 + (2*t^7.419)/(g1^3*g2^9) + (2*t^7.419)/(g1^13*g2^7) + t^7.419/(g1^23*g2^5) + 3*g1^8*g2^8*t^7.581 + g1^6*t^7.698 + (g2^2*t^7.698)/g1^4 + (2*g1^4*t^7.814)/g2^8 + (2*t^7.814)/(g1^6*g2^6) + (2*t^7.814)/(g1^16*g2^4) + g1^13*g2*t^8.093 - 2*g1^3*g2^3*t^8.093 + (g2^5*t^8.093)/g1^7 + (g1^11*t^8.21)/g2^7 - (g1*t^8.21)/g2^5 - t^8.21/(g1^9*g2^3) + t^8.21/(g1^19*g2) + 3*g1^12*g2^12*t^8.371 + g1^10*g2^4*t^8.488 + g2^6*t^8.488 + (2*t^8.605)/g1^12 + (2*g1^8*t^8.605)/g2^4 - t^8.605/(g1^2*g2^2) + (g1^6*t^8.722)/g2^12 + t^8.722/(g1^24*g2^6) + (g1^4*t^8.838)/g2^20 + t^8.838/(g1^6*g2^18) + t^8.838/(g1^16*g2^16) + t^8.838/(g1^26*g2^14) + t^8.838/(g1^36*g2^12) + 2*g1^7*g2^7*t^8.883 - t^4.302/(g1*g2*y) - t^6.512/(g2^6*y) - t^6.512/(g1^10*g2^4*y) + t^7.302/(g1^6*y) + (g1^4*t^7.302)/(g2^2*y) + t^7.419/(g1^8*g2^8*y) + (g1*g2*t^7.698)/y + t^7.814/(g1*g2^7*y) + t^7.814/(g1^11*g2^5*y) + (2*g1^8*g2^2*t^8.093)/y + (2*g2^4*t^8.093)/(g1^2*y) + (g1^6*t^8.21)/(g2^6*y) + (2*t^8.21)/(g1^4*g2^4*y) + t^8.21/(g1^14*g2^2*y) + (2*g1^5*g2^5*t^8.488)/y + (3*g1^3*t^8.605)/(g2^3*y) + (3*t^8.605)/(g1^7*g2*y) - (g1*t^8.722)/(g2^11*y) - t^8.722/(g1^9*g2^9*y) - t^8.722/(g1^19*g2^7*y) - (t^4.302*y)/(g1*g2) - (t^6.512*y)/g2^6 - (t^6.512*y)/(g1^10*g2^4) + (t^7.302*y)/g1^6 + (g1^4*t^7.302*y)/g2^2 + (t^7.419*y)/(g1^8*g2^8) + g1*g2*t^7.698*y + (t^7.814*y)/(g1*g2^7) + (t^7.814*y)/(g1^11*g2^5) + 2*g1^8*g2^2*t^8.093*y + (2*g2^4*t^8.093*y)/g1^2 + (g1^6*t^8.21*y)/g2^6 + (2*t^8.21*y)/(g1^4*g2^4) + (t^8.21*y)/(g1^14*g2^2) + 2*g1^5*g2^5*t^8.488*y + (3*g1^3*t^8.605*y)/g2^3 + (3*t^8.605*y)/(g1^7*g2) - (g1*t^8.722*y)/g2^11 - (t^8.722*y)/(g1^9*g2^9) - (t^8.722*y)/(g1^19*g2^7)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
301 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{4}$ 0.5735 0.7428 0.772 [M:[1.1397, 0.7206, 0.7206, 0.8603], q:[0.5754, 0.9945], qb:[0.2849, 0.4246], phi:[0.4302]] t^2.129 + 2*t^2.162 + 2*t^2.581 + 2*t^3. + t^3.419 + 2*t^4.257 + 2*t^4.29 + 3*t^4.324 + 3*t^4.71 + 4*t^4.743 + 2*t^5.129 + 6*t^5.162 + t^5.548 + 4*t^5.581 + t^6. - t^4.29/y - t^4.29*y detail
300 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ 0.5633 0.7261 0.7758 [M:[1.1313, 0.7766, 0.698, 0.9607], q:[0.5662, 0.9995], qb:[0.3025, 0.3945], phi:[0.4343]] t^2.091 + t^2.094 + t^2.33 + t^2.606 + 2*t^2.882 + 2*t^3.394 + 2*t^4.182 + t^4.185 + t^4.188 + t^4.421 + t^4.424 + t^4.66 + 2*t^4.697 + t^4.7 + t^4.936 + 2*t^4.973 + 2*t^4.976 + 2*t^5.212 + 2*t^5.485 + 3*t^5.488 + t^5.724 + 3*t^5.764 - 2*t^6. - t^4.303/y - t^4.303*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
119 SU2adj1nf2 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ 0.6689 0.8346 0.8015 [M:[0.6982, 0.6982, 0.6982], q:[0.8254, 0.8254], qb:[0.4763, 0.4763], phi:[0.3491]] 4*t^2.095 + t^2.858 + 4*t^3.905 + 10*t^4.189 + 5*t^4.953 + t^5.716 + 7*t^6. - t^4.047/y - t^4.047*y detail