Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
190 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_1\phi_1^2$ 0.5615 0.7218 0.7778 [X:[], M:[1.1317, 0.7365, 0.7365], q:[0.5853, 0.9805], qb:[0.2829, 0.4147], phi:[0.4341]] [X:[], M:[[2, 2], [1, -5], [-9, -3]], q:[[-5, -2], [6, 3]], qb:[[3, 0], [0, 3]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$\tilde{q}_1\tilde{q}_2$, $ M_2$, $ M_3$, $ \phi_1^2$, $ \phi_1\tilde{q}_1^2$, $ q_1\tilde{q}_2$, $ M_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_2^2$, $ M_2M_3$, $ M_3^2$, $ q_1q_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_2\phi_1^2$, $ M_3\phi_1^2$, $ \phi_1\tilde{q}_1^3\tilde{q}_2$, $ q_1\tilde{q}_1\tilde{q}_2^2$, $ M_2\phi_1\tilde{q}_1^2$, $ \phi_1^4$, $ M_3\phi_1\tilde{q}_1^2$, $ M_2q_1\tilde{q}_2$, $ M_3q_1\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2\tilde{q}_2^2$, $ M_1M_2$, $ \phi_1^3\tilde{q}_1^2$, $ M_1M_3$, $ M_3\phi_1\tilde{q}_1\tilde{q}_2$ $\phi_1^2\tilde{q}_1^4$, $ \phi_1^3\tilde{q}_1\tilde{q}_2$, $ q_1^2\tilde{q}_2^2$ 1 t^2.09 + 2*t^2.21 + t^2.6 + 2*t^3. + 2*t^3.4 + 2*t^4.19 + 2*t^4.3 + 3*t^4.42 + 2*t^4.7 + 2*t^4.81 + 2*t^5.09 + 4*t^5.21 + 2*t^5.49 + 4*t^5.6 + t^6. + 2*t^6.28 + 4*t^6.4 + 2*t^6.51 + 4*t^6.63 + 2*t^6.79 + 2*t^6.91 + 3*t^7.02 + 2*t^7.19 + 2*t^7.3 + 6*t^7.42 + 3*t^7.58 + 2*t^7.7 + 6*t^7.81 + 3*t^8.37 + 2*t^8.49 + 3*t^8.6 + 2*t^8.72 + 5*t^8.84 + 2*t^8.88 - t^4.3/y - (2*t^6.51)/y + (2*t^7.3)/y + t^7.42/y + t^7.7/y + (2*t^7.81)/y + (4*t^8.09)/y + (4*t^8.21)/y + (2*t^8.49)/y + (6*t^8.6)/y - (3*t^8.72)/y - t^4.3*y - 2*t^6.51*y + 2*t^7.3*y + t^7.42*y + t^7.7*y + 2*t^7.81*y + 4*t^8.09*y + 4*t^8.21*y + 2*t^8.49*y + 6*t^8.6*y - 3*t^8.72*y g1^3*g2^3*t^2.09 + (g1*t^2.21)/g2^5 + t^2.21/(g1^9*g2^3) + t^2.6/(g1^2*g2^2) + (g1^5*t^3.)/g2 + (g2*t^3.)/g1^5 + 2*g1^2*g2^2*t^3.4 + 2*g1^6*g2^6*t^4.19 + t^4.3/g1^6 + (g1^4*t^4.3)/g2^2 + (g1^2*t^4.42)/g2^10 + t^4.42/(g1^8*g2^8) + t^4.42/(g1^18*g2^6) + 2*g1*g2*t^4.7 + t^4.81/(g1*g2^7) + t^4.81/(g1^11*g2^5) + g1^8*g2^2*t^5.09 + (g2^4*t^5.09)/g1^2 + (g1^6*t^5.21)/g2^6 + (2*t^5.21)/(g1^4*g2^4) + t^5.21/(g1^14*g2^2) + 2*g1^5*g2^5*t^5.49 + (2*g1^3*t^5.6)/g2^3 + (2*t^5.6)/(g1^7*g2) - t^6. + (g1^10*t^6.)/g2^2 + (g2^2*t^6.)/g1^10 + 2*g1^9*g2^9*t^6.28 + 2*g1^7*g2*t^6.4 + (2*g2^3*t^6.4)/g1^3 + (g1^5*t^6.51)/g2^7 + t^6.51/(g1^15*g2^3) + (g1^3*t^6.63)/g2^15 + t^6.63/(g1^7*g2^13) + t^6.63/(g1^17*g2^11) + t^6.63/(g1^27*g2^9) + 2*g1^4*g2^4*t^6.79 + (g1^2*t^6.91)/g2^4 + t^6.91/(g1^8*g2^2) + t^7.02/g2^12 + t^7.02/(g1^10*g2^10) + t^7.02/(g1^20*g2^8) + g1^11*g2^5*t^7.19 + g1*g2^7*t^7.19 + (g1^9*t^7.3)/g2^3 + (g2*t^7.3)/g1^11 + (g1^7*t^7.42)/g2^11 + (2*t^7.42)/(g1^3*g2^9) + (2*t^7.42)/(g1^13*g2^7) + t^7.42/(g1^23*g2^5) + 3*g1^8*g2^8*t^7.58 + g1^6*t^7.7 + (g2^2*t^7.7)/g1^4 + (2*g1^4*t^7.81)/g2^8 + (2*t^7.81)/(g1^6*g2^6) + (2*t^7.81)/(g1^16*g2^4) + g1^13*g2*t^8.09 - 2*g1^3*g2^3*t^8.09 + (g2^5*t^8.09)/g1^7 + (g1^11*t^8.21)/g2^7 - (g1*t^8.21)/g2^5 - t^8.21/(g1^9*g2^3) + t^8.21/(g1^19*g2) + 3*g1^12*g2^12*t^8.37 + g1^10*g2^4*t^8.49 + g2^6*t^8.49 + (2*t^8.6)/g1^12 + (2*g1^8*t^8.6)/g2^4 - t^8.6/(g1^2*g2^2) + (g1^6*t^8.72)/g2^12 + t^8.72/(g1^24*g2^6) + (g1^4*t^8.84)/g2^20 + t^8.84/(g1^6*g2^18) + t^8.84/(g1^16*g2^16) + t^8.84/(g1^26*g2^14) + t^8.84/(g1^36*g2^12) + 2*g1^7*g2^7*t^8.88 - t^4.3/(g1*g2*y) - t^6.51/(g2^6*y) - t^6.51/(g1^10*g2^4*y) + t^7.3/(g1^6*y) + (g1^4*t^7.3)/(g2^2*y) + t^7.42/(g1^8*g2^8*y) + (g1*g2*t^7.7)/y + t^7.81/(g1*g2^7*y) + t^7.81/(g1^11*g2^5*y) + (2*g1^8*g2^2*t^8.09)/y + (2*g2^4*t^8.09)/(g1^2*y) + (g1^6*t^8.21)/(g2^6*y) + (2*t^8.21)/(g1^4*g2^4*y) + t^8.21/(g1^14*g2^2*y) + (2*g1^5*g2^5*t^8.49)/y + (3*g1^3*t^8.6)/(g2^3*y) + (3*t^8.6)/(g1^7*g2*y) - (g1*t^8.72)/(g2^11*y) - t^8.72/(g1^9*g2^9*y) - t^8.72/(g1^19*g2^7*y) - (t^4.3*y)/(g1*g2) - (t^6.51*y)/g2^6 - (t^6.51*y)/(g1^10*g2^4) + (t^7.3*y)/g1^6 + (g1^4*t^7.3*y)/g2^2 + (t^7.42*y)/(g1^8*g2^8) + g1*g2*t^7.7*y + (t^7.81*y)/(g1*g2^7) + (t^7.81*y)/(g1^11*g2^5) + 2*g1^8*g2^2*t^8.09*y + (2*g2^4*t^8.09*y)/g1^2 + (g1^6*t^8.21*y)/g2^6 + (2*t^8.21*y)/(g1^4*g2^4) + (t^8.21*y)/(g1^14*g2^2) + 2*g1^5*g2^5*t^8.49*y + (3*g1^3*t^8.6*y)/g2^3 + (3*t^8.6*y)/(g1^7*g2) - (g1*t^8.72*y)/g2^11 - (t^8.72*y)/(g1^9*g2^9) - (t^8.72*y)/(g1^19*g2^7)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
301 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_1\phi_1^2$ + $ M_1M_4$ 0.5735 0.7428 0.772 [X:[], M:[1.1397, 0.7206, 0.7206, 0.8603], q:[0.5754, 0.9945], qb:[0.2849, 0.4246], phi:[0.4302]] t^2.13 + 2*t^2.16 + 2*t^2.58 + 2*t^3. + t^3.42 + 2*t^4.26 + 2*t^4.29 + 3*t^4.32 + 3*t^4.71 + 4*t^4.74 + 2*t^5.13 + 6*t^5.16 + t^5.55 + 4*t^5.58 + t^6. - t^4.29/y - t^4.29*y detail
300 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_1\phi_1^2$ + $ M_4\phi_1\tilde{q}_1^2$ 0.5633 0.7261 0.7758 [X:[], M:[1.1313, 0.7766, 0.698, 0.9607], q:[0.5662, 0.9995], qb:[0.3025, 0.3945], phi:[0.4343]] 2*t^2.09 + t^2.33 + t^2.61 + 2*t^2.88 + 2*t^3.39 + 2*t^4.18 + 2*t^4.19 + 2*t^4.42 + t^4.66 + 3*t^4.7 + t^4.94 + 2*t^4.97 + 2*t^4.98 + 2*t^5.21 + 2*t^5.48 + 3*t^5.49 + t^5.72 + 3*t^5.76 - 2*t^6. - t^4.3/y - t^4.3*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
119 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ 0.6689 0.8346 0.8015 [X:[], M:[0.6982, 0.6982, 0.6982], q:[0.8254, 0.8254], qb:[0.4763, 0.4763], phi:[0.3491]] 4*t^2.09 + t^2.86 + 4*t^3.91 + 10*t^4.19 + 5*t^4.95 + t^5.72 + 7*t^6. - t^4.05/y - t^4.05*y detail