Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1891 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{4}$ + ${ }M_{5}q_{1}\tilde{q}_{1}$ 0.5654 0.7365 0.7678 [M:[1.0526, 0.8423, 1.1577, 0.8423, 0.7371], q:[0.7631, 0.1843], qb:[0.4997, 0.658], phi:[0.4737]] [M:[[-4], [12], [-12], [12], [20]], q:[[-1], [5]], qb:[[-19], [7]], phi:[[2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{1}$, ${ }M_{5}$, ${ }M_{4}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{5}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}M_{5}$, ${ }M_{5}\phi_{1}q_{2}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}^{4}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{5}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}^{3}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{5}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$ ${}M_{3}\phi_{1}q_{2}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$ 0 t^2.052 + t^2.211 + 3*t^2.527 + t^2.842 + t^3.158 + t^3.473 + t^3.948 + t^4.104 + 2*t^4.263 + t^4.419 + t^4.423 + 2*t^4.579 + 3*t^4.738 + 2*t^4.894 + 6*t^5.054 + t^5.21 + 5*t^5.369 + 3*t^5.685 + t^6.156 + t^6.159 + t^6.315 + t^6.471 + 3*t^6.475 + 2*t^6.631 + t^6.634 + 4*t^6.79 + 2*t^6.946 + 3*t^6.95 + 4*t^7.106 + t^7.262 + 6*t^7.265 + 3*t^7.421 + 12*t^7.581 + t^7.893 + 10*t^7.896 - 2*t^8.052 + t^8.208 + 3*t^8.211 + t^8.371 + t^8.524 - 3*t^8.527 + t^8.683 + 3*t^8.686 + t^8.839 - 3*t^8.842 + t^8.846 + t^8.998 - t^4.421/y - t^6.633/y - t^6.948/y + t^7.263/y + (3*t^7.579)/y + (3*t^7.738)/y + (2*t^7.894)/y + (4*t^8.054)/y + (2*t^8.21)/y + (4*t^8.369)/y + t^8.525/y + (4*t^8.685)/y - t^8.844/y - t^4.421*y - t^6.633*y - t^6.948*y + t^7.263*y + 3*t^7.579*y + 3*t^7.738*y + 2*t^7.894*y + 4*t^8.054*y + 2*t^8.21*y + 4*t^8.369*y + t^8.525*y + 4*t^8.685*y - t^8.844*y t^2.052/g1^14 + g1^20*t^2.211 + 3*g1^12*t^2.527 + g1^4*t^2.842 + t^3.158/g1^4 + t^3.473/g1^12 + g1^14*t^3.948 + t^4.104/g1^28 + 2*g1^6*t^4.263 + t^4.419/g1^36 + g1^40*t^4.423 + (2*t^4.579)/g1^2 + 3*g1^32*t^4.738 + (2*t^4.894)/g1^10 + 6*g1^24*t^5.054 + t^5.21/g1^18 + 5*g1^16*t^5.369 + 3*g1^8*t^5.685 + t^6.156/g1^42 + g1^34*t^6.159 + t^6.315/g1^8 + t^6.471/g1^50 + 3*g1^26*t^6.475 + (2*t^6.631)/g1^16 + g1^60*t^6.634 + 4*g1^18*t^6.79 + (2*t^6.946)/g1^24 + 3*g1^52*t^6.95 + 4*g1^10*t^7.106 + t^7.262/g1^32 + 6*g1^44*t^7.265 + 3*g1^2*t^7.421 + 12*g1^36*t^7.581 + t^7.893/g1^48 + 10*g1^28*t^7.896 - (2*t^8.052)/g1^14 + t^8.208/g1^56 + 3*g1^20*t^8.211 + g1^54*t^8.371 + t^8.524/g1^64 - 3*g1^12*t^8.527 + t^8.683/g1^30 + 3*g1^46*t^8.686 + t^8.839/g1^72 - 3*g1^4*t^8.842 + g1^80*t^8.846 + t^8.998/g1^38 - (g1^2*t^4.421)/y - (g1^22*t^6.633)/y - (g1^14*t^6.948)/y + (g1^6*t^7.263)/y + (3*t^7.579)/(g1^2*y) + (3*g1^32*t^7.738)/y + (2*t^7.894)/(g1^10*y) + (4*g1^24*t^8.054)/y + (2*t^8.21)/(g1^18*y) + (4*g1^16*t^8.369)/y + t^8.525/(g1^26*y) + (4*g1^8*t^8.685)/y - (g1^42*t^8.844)/y - g1^2*t^4.421*y - g1^22*t^6.633*y - g1^14*t^6.948*y + g1^6*t^7.263*y + (3*t^7.579*y)/g1^2 + 3*g1^32*t^7.738*y + (2*t^7.894*y)/g1^10 + 4*g1^24*t^8.054*y + (2*t^8.21*y)/g1^18 + 4*g1^16*t^8.369*y + (t^8.525*y)/g1^26 + 4*g1^8*t^8.685*y - g1^42*t^8.844*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
555 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{4}$ 0.5462 0.7009 0.7793 [M:[1.049, 0.853, 1.147, 0.853], q:[0.7622, 0.1888], qb:[0.4827, 0.6643], phi:[0.4755]] t^2.014 + 3*t^2.559 + t^2.853 + t^3.147 + t^3.441 + t^3.735 + t^3.986 + t^4.029 + t^4.28 + t^4.323 + 2*t^4.573 + 2*t^4.867 + 5*t^5.118 + t^5.161 + 4*t^5.412 + 2*t^5.706 + t^5.749 - t^4.427/y - t^4.427*y detail