Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
1888 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{6}q_{1}\tilde{q}_{1}$ | 0.6371 | 0.8353 | 0.7627 | [M:[0.958, 1.1261, 0.958, 0.8739, 0.7168, 0.8009], q:[0.7395, 0.3026], qb:[0.4596, 0.4142], phi:[0.521]] | [M:[[4, 4], [-12, -12], [4, 4], [12, 12], [-5, 7], [-13, -1]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{5}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{6}$, ${ }M_{4}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}M_{6}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }M_{4}M_{5}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{5}$, ${ }M_{4}M_{6}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{4}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{3}M_{6}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }M_{5}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{6}\phi_{1}q_{2}^{2}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$ | ${}M_{4}\phi_{1}q_{2}^{2}$ | -2 | 2*t^2.15 + t^2.287 + t^2.403 + t^2.622 + 2*t^2.874 + t^3.378 + t^3.461 + t^3.713 + t^4.048 + t^4.185 + 3*t^4.301 + t^4.321 + 2*t^4.437 + 2*t^4.553 + t^4.573 + t^4.689 + 2*t^4.772 + t^4.805 + t^4.908 + 5*t^5.024 + 2*t^5.16 + t^5.243 + 2*t^5.276 + 2*t^5.495 + t^5.529 + 2*t^5.611 + 3*t^5.748 + t^5.781 + 2*t^5.864 - 2*t^6. + t^6.083 + t^6.116 - t^6.136 + 2*t^6.199 + 4*t^6.335 + 5*t^6.451 + t^6.471 + 4*t^6.587 + t^6.608 + t^6.67 + 3*t^6.703 + t^6.724 + t^6.757 + t^6.806 + t^6.84 + t^6.86 + 5*t^6.922 + t^6.943 + 2*t^6.955 - t^6.976 + 3*t^7.059 + t^7.092 + 8*t^7.174 + 2*t^7.195 + t^7.208 - t^7.228 + 2*t^7.311 + 2*t^7.393 + 5*t^7.427 + t^7.447 + t^7.509 + t^7.53 - t^7.563 + 5*t^7.646 + 3*t^7.679 - t^7.699 + 4*t^7.762 + 2*t^7.782 - t^7.815 + t^7.865 + 6*t^7.898 + t^7.931 + 3*t^8.014 + t^8.034 + t^8.097 + 2*t^8.117 - 3*t^8.15 + t^8.184 + 3*t^8.233 + 2*t^8.266 - 5*t^8.287 + 3*t^8.349 + 4*t^8.369 - 4*t^8.403 - t^8.423 + 7*t^8.485 + t^8.506 + t^8.519 - 3*t^8.539 + 7*t^8.601 + 2*t^8.622 + t^8.642 + t^8.704 + 6*t^8.738 + 2*t^8.82 + 5*t^8.853 - 7*t^8.874 + t^8.894 + t^8.907 + 4*t^8.957 + 2*t^8.99 - t^4.563/y - t^6.713/y - t^6.966/y + t^7.301/y + t^7.437/y + (2*t^7.553)/y + (2*t^7.689)/y + (2*t^7.772)/y + t^7.908/y + (5*t^8.024)/y + (3*t^8.16)/y + (2*t^8.276)/y + t^8.413/y + (2*t^8.495)/y + (2*t^8.529)/y + (2*t^8.611)/y + t^8.665/y + (2*t^8.748)/y + t^8.781/y + (2*t^8.864)/y - t^4.563*y - t^6.713*y - t^6.966*y + t^7.301*y + t^7.437*y + 2*t^7.553*y + 2*t^7.689*y + 2*t^7.772*y + t^7.908*y + 5*t^8.024*y + 3*t^8.16*y + 2*t^8.276*y + t^8.413*y + 2*t^8.495*y + 2*t^8.529*y + 2*t^8.611*y + t^8.665*y + 2*t^8.748*y + t^8.781*y + 2*t^8.864*y | (2*g2^7*t^2.15)/g1^5 + (g1^7*t^2.287)/g2^5 + t^2.403/(g1^13*g2) + g1^12*g2^12*t^2.622 + 2*g1^4*g2^4*t^2.874 + t^3.378/(g1^12*g2^12) + g1*g2^13*t^3.461 + (g2^5*t^3.713)/g1^7 + (g2^22*t^4.048)/g1^2 + g1^10*g2^10*t^4.185 + (3*g2^14*t^4.301)/g1^10 + (g1^22*t^4.321)/g2^2 + 2*g1^2*g2^2*t^4.437 + (2*g2^6*t^4.553)/g1^18 + (g1^14*t^4.573)/g2^10 + t^4.689/(g1^6*g2^6) + 2*g1^7*g2^19*t^4.772 + t^4.805/(g1^26*g2^2) + g1^19*g2^7*t^4.908 + (5*g2^11*t^5.024)/g1 + (2*g1^11*t^5.16)/g2 + g1^24*g2^24*t^5.243 + (2*g2^3*t^5.276)/g1^9 + 2*g1^16*g2^16*t^5.495 + t^5.529/(g1^17*g2^5) + (2*g2^20*t^5.611)/g1^4 + 3*g1^8*g2^8*t^5.748 + t^5.781/(g1^25*g2^13) + (2*g2^12*t^5.864)/g1^12 - 2*t^6. + g1^13*g2^25*t^6.083 + (g2^4*t^6.116)/g1^20 - (g1^12*t^6.136)/g2^12 + (2*g2^29*t^6.199)/g1^7 + 4*g1^5*g2^17*t^6.335 + (5*g2^21*t^6.451)/g1^15 + g1^17*g2^5*t^6.471 + (4*g2^9*t^6.587)/g1^3 + (g1^29*t^6.608)/g2^7 + g1^10*g2^34*t^6.67 + (3*g2^13*t^6.703)/g1^23 + (g1^9*t^6.724)/g2^3 + t^6.757/(g1^24*g2^24) + g1^22*g2^22*t^6.806 + (g2*t^6.84)/g1^11 + (g1^21*t^6.86)/g2^15 + 5*g1^2*g2^26*t^6.922 + g1^34*g2^10*t^6.943 + (2*g2^5*t^6.955)/g1^31 - (g1*t^6.976)/g2^11 + 3*g1^14*g2^14*t^7.059 + t^7.092/(g1^19*g2^7) + (8*g2^18*t^7.174)/g1^6 + 2*g1^26*g2^2*t^7.195 + t^7.208/(g1^39*g2^3) - t^7.228/(g1^7*g2^19) + 2*g1^6*g2^6*t^7.311 + 2*g1^19*g2^31*t^7.393 + (5*g2^10*t^7.427)/g1^14 + (g1^18*t^7.447)/g2^6 + (g2^35*t^7.509)/g1 + g1^31*g2^19*t^7.53 - t^7.563/(g1^2*g2^2) + 5*g1^11*g2^23*t^7.646 + (3*g2^2*t^7.679)/g1^22 - (g1^10*t^7.699)/g2^14 + (4*g2^27*t^7.762)/g1^9 + 2*g1^23*g2^11*t^7.782 - t^7.815/(g1^10*g2^10) + g1^36*g2^36*t^7.865 + 6*g1^3*g2^15*t^7.898 + t^7.931/(g1^30*g2^6) + (3*g2^19*t^8.014)/g1^17 + g1^15*g2^3*t^8.034 + (g2^44*t^8.097)/g1^4 + 2*g1^28*g2^28*t^8.117 - (3*g2^7*t^8.15)/g1^5 + t^8.184/(g1^38*g2^14) + 3*g1^8*g2^32*t^8.233 + (2*g2^11*t^8.266)/g1^25 - (5*g1^7*t^8.287)/g2^5 + (3*g2^36*t^8.349)/g1^12 + 4*g1^20*g2^20*t^8.369 - (4*t^8.403)/(g1^13*g2) - (g1^19*t^8.423)/g2^17 + 7*g2^24*t^8.485 + g1^32*g2^8*t^8.506 + (g2^3*t^8.519)/g1^33 - (3*t^8.539)/(g1*g2^13) + (7*g2^28*t^8.601)/g1^20 + 2*g1^12*g2^12*t^8.622 + (g1^44*t^8.642)/g2^4 + g1^25*g2^37*t^8.704 + (6*g2^16*t^8.738)/g1^8 + 2*g1^5*g2^41*t^8.82 + (5*g2^20*t^8.853)/g1^28 - 7*g1^4*g2^4*t^8.874 + (g1^36*t^8.894)/g2^12 + t^8.907/(g1^29*g2^17) + 4*g1^17*g2^29*t^8.957 + (2*g2^8*t^8.99)/g1^16 - t^4.563/(g1^2*g2^2*y) - (g2^5*t^6.713)/(g1^7*y) - t^6.966/(g1^15*g2^3*y) + (g2^14*t^7.301)/(g1^10*y) + (g1^2*g2^2*t^7.437)/y + (2*g2^6*t^7.553)/(g1^18*y) + (2*t^7.689)/(g1^6*g2^6*y) + (2*g1^7*g2^19*t^7.772)/y + (g1^19*g2^7*t^7.908)/y + (5*g2^11*t^8.024)/(g1*y) + (3*g1^11*t^8.16)/(g2*y) + (2*g2^3*t^8.276)/(g1^9*y) + (g1^3*t^8.413)/(g2^9*y) + (2*g1^16*g2^16*t^8.495)/y + (2*t^8.529)/(g1^17*g2^5*y) + (2*g2^20*t^8.611)/(g1^4*y) + t^8.665/(g1^5*g2^17*y) + (2*g1^8*g2^8*t^8.748)/y + t^8.781/(g1^25*g2^13*y) + (2*g2^12*t^8.864)/(g1^12*y) - (t^4.563*y)/(g1^2*g2^2) - (g2^5*t^6.713*y)/g1^7 - (t^6.966*y)/(g1^15*g2^3) + (g2^14*t^7.301*y)/g1^10 + g1^2*g2^2*t^7.437*y + (2*g2^6*t^7.553*y)/g1^18 + (2*t^7.689*y)/(g1^6*g2^6) + 2*g1^7*g2^19*t^7.772*y + g1^19*g2^7*t^7.908*y + (5*g2^11*t^8.024*y)/g1 + (3*g1^11*t^8.16*y)/g2 + (2*g2^3*t^8.276*y)/g1^9 + (g1^3*t^8.413*y)/g2^9 + 2*g1^16*g2^16*t^8.495*y + (2*t^8.529*y)/(g1^17*g2^5) + (2*g2^20*t^8.611*y)/g1^4 + (t^8.665*y)/(g1^5*g2^17) + 2*g1^8*g2^8*t^8.748*y + (t^8.781*y)/(g1^25*g2^13) + (2*g2^12*t^8.864*y)/g1^12 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
2911 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{6}q_{1}\tilde{q}_{1}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ | 0.6356 | 0.8354 | 0.7609 | [M:[0.9443, 1.1671, 0.9443, 0.8329, 0.7215, 0.8329], q:[0.7361, 0.3196], qb:[0.431, 0.4019], phi:[0.5279]] | 2*t^2.164 + t^2.252 + 2*t^2.499 + 2*t^2.833 + t^3.414 + t^3.501 + t^3.748 + t^3.995 + t^4.082 + t^4.17 + 3*t^4.329 + 2*t^4.416 + t^4.504 + 4*t^4.663 + 2*t^4.751 + 7*t^4.997 + 2*t^5.085 + 4*t^5.332 + 2*t^5.578 + 4*t^5.666 + 3*t^5.912 - t^6. - t^4.584/y - t^4.584*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
545 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{1}$ | 0.6216 | 0.8089 | 0.7684 | [M:[0.9496, 1.1511, 0.9496, 0.8489, 0.7292], q:[0.7374, 0.313], qb:[0.4326, 0.4162], phi:[0.5252]] | 2*t^2.188 + t^2.237 + t^2.547 + 2*t^2.849 + t^3.453 + t^3.461 + t^3.51 + t^3.763 + t^4.073 + t^4.122 + t^4.171 + 3*t^4.375 + 2*t^4.424 + t^4.474 + 2*t^4.734 + t^4.783 + 4*t^5.036 + 2*t^5.086 + t^5.093 + 2*t^5.395 + t^5.641 + 2*t^5.649 + 5*t^5.698 + t^5.747 + t^5.951 - 2*t^6. - t^4.576/y - t^4.576*y | detail |