Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1887 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ 0.636 0.8314 0.765 [M:[0.9582, 1.1254, 0.9582, 0.8746, 0.7463, 0.8164], q:[0.7395, 0.3023], qb:[0.4305, 0.4441], phi:[0.5209]] [M:[[4, 4], [-12, -12], [4, 4], [12, 12], [-5, 7], [-1, -13]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{1}$, ${ }M_{5}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{6}$, ${ }M_{4}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{4}M_{5}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }M_{4}M_{6}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{5}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{3}M_{6}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }M_{5}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{5}q_{1}\tilde{q}_{1}$, ${ }M_{6}\phi_{1}q_{2}^{2}$ ${}M_{4}\phi_{1}q_{2}^{2}$ -2 t^2.198 + 2*t^2.239 + t^2.449 + t^2.624 + 2*t^2.875 + t^3.376 + t^3.51 + t^3.802 + t^4.146 + t^4.186 + t^4.227 + t^4.396 + 2*t^4.437 + 3*t^4.478 + t^4.647 + 2*t^4.688 + t^4.822 + 2*t^4.863 + t^4.898 + 3*t^5.073 + 4*t^5.114 + t^5.247 + 2*t^5.324 + 2*t^5.498 + t^5.615 + t^5.708 + 4*t^5.749 + t^5.825 - 2*t^6. + t^6.041 + t^6.134 + t^6.251 + t^6.344 + 3*t^6.385 + 2*t^6.425 + 2*t^6.466 + 2*t^6.595 + t^6.636 + 4*t^6.676 + 4*t^6.717 + t^6.753 + t^6.769 + t^6.81 + t^6.846 + t^6.851 + t^6.886 + t^6.927 + 3*t^7.02 + 3*t^7.061 + t^7.096 + 4*t^7.102 + t^7.137 + 2*t^7.271 + 4*t^7.312 + t^7.347 + 5*t^7.353 + t^7.446 + 2*t^7.486 + 2*t^7.522 + t^7.563 + t^7.656 + 3*t^7.696 + 4*t^7.737 + 2*t^7.773 - t^7.814 + t^7.854 + t^7.871 + t^7.907 + 4*t^7.947 + 5*t^7.988 + t^8.029 + t^8.064 + 2*t^8.122 - t^8.198 - 6*t^8.239 + t^8.275 + t^8.28 + t^8.291 + 2*t^8.332 + 5*t^8.373 + t^8.414 - 4*t^8.449 + t^8.454 - t^8.49 + t^8.542 + 3*t^8.583 + 4*t^8.624 + 2*t^8.664 + t^8.7 + 3*t^8.705 + t^8.757 + 2*t^8.793 + t^8.834 - 6*t^8.875 + 4*t^8.915 + 5*t^8.956 + t^8.967 + t^8.992 - t^4.563/y - t^6.802/y - t^7.012/y + t^7.437/y + t^7.478/y + t^7.647/y + (3*t^7.688)/y + t^7.822/y + (2*t^7.863)/y + (3*t^8.073)/y + (5*t^8.114)/y + (3*t^8.324)/y + (2*t^8.498)/y + t^8.575/y + (2*t^8.615)/y + t^8.708/y + (3*t^8.749)/y + t^8.825/y + t^8.959/y - t^4.563*y - t^6.802*y - t^7.012*y + t^7.437*y + t^7.478*y + t^7.647*y + 3*t^7.688*y + t^7.822*y + 2*t^7.863*y + 3*t^8.073*y + 5*t^8.114*y + 3*t^8.324*y + 2*t^8.498*y + t^8.575*y + 2*t^8.615*y + t^8.708*y + 3*t^8.749*y + t^8.825*y + t^8.959*y (g1^7*t^2.198)/g2^5 + (2*g2^7*t^2.239)/g1^5 + t^2.449/(g1*g2^13) + g1^12*g2^12*t^2.624 + 2*g1^4*g2^4*t^2.875 + t^3.376/(g1^12*g2^12) + g1^13*g2*t^3.51 + (g2^5*t^3.802)/g1^7 + (g1^22*t^4.146)/g2^2 + g1^10*g2^10*t^4.186 + (g2^22*t^4.227)/g1^2 + (g1^14*t^4.396)/g2^10 + 2*g1^2*g2^2*t^4.437 + (3*g2^14*t^4.478)/g1^10 + (g1^6*t^4.647)/g2^18 + (2*t^4.688)/(g1^6*g2^6) + g1^19*g2^7*t^4.822 + 2*g1^7*g2^19*t^4.863 + t^4.898/(g1^2*g2^26) + (3*g1^11*t^5.073)/g2 + (4*g2^11*t^5.114)/g1 + g1^24*g2^24*t^5.247 + (2*g1^3*t^5.324)/g2^9 + 2*g1^16*g2^16*t^5.498 + t^5.615/(g1^17*g2^5) + (g1^20*t^5.708)/g2^4 + 4*g1^8*g2^8*t^5.749 + t^5.825/(g1^13*g2^25) - 2*t^6. + (g2^12*t^6.041)/g1^12 + g1^25*g2^13*t^6.134 + t^6.251/(g1^8*g2^8) + (g1^29*t^6.344)/g2^7 + 3*g1^17*g2^5*t^6.385 + 2*g1^5*g2^17*t^6.425 + (2*g2^29*t^6.466)/g1^7 + (2*g1^21*t^6.595)/g2^15 + (g1^9*t^6.636)/g2^3 + (4*g2^9*t^6.676)/g1^3 + (4*g2^21*t^6.717)/g1^15 + t^6.753/(g1^24*g2^24) + g1^34*g2^10*t^6.769 + g1^22*g2^22*t^6.81 + (g1^13*t^6.846)/g2^23 + g1^10*g2^34*t^6.851 + (g1*t^6.886)/g2^11 + (g2*t^6.927)/g1^11 + 3*g1^26*g2^2*t^7.02 + 3*g1^14*g2^14*t^7.061 + (g1^5*t^7.096)/g2^31 + 4*g1^2*g2^26*t^7.102 + t^7.137/(g1^7*g2^19) + (2*g1^18*t^7.271)/g2^6 + 4*g1^6*g2^6*t^7.312 + t^7.347/(g1^3*g2^39) + (5*g2^18*t^7.353)/g1^6 + g1^31*g2^19*t^7.446 + 2*g1^19*g2^31*t^7.486 + (2*g1^10*t^7.522)/g2^14 + t^7.563/(g1^2*g2^2) + (g1^35*t^7.656)/g2 + 3*g1^23*g2^11*t^7.696 + 4*g1^11*g2^23*t^7.737 + (2*g1^2*t^7.773)/g2^22 - t^7.814/(g1^10*g2^10) + (g2^2*t^7.854)/g1^22 + g1^36*g2^36*t^7.871 + (g1^27*t^7.907)/g2^9 + 4*g1^15*g2^3*t^7.947 + 5*g1^3*g2^15*t^7.988 + (g2^27*t^8.029)/g1^9 + t^8.064/(g1^18*g2^18) + 2*g1^28*g2^28*t^8.122 - (g1^7*t^8.198)/g2^5 - (6*g2^7*t^8.239)/g1^5 + t^8.275/(g1^14*g2^38) + (g2^19*t^8.28)/g1^17 + (g1^44*t^8.291)/g2^4 + 2*g1^32*g2^8*t^8.332 + 5*g1^20*g2^20*t^8.373 + g1^8*g2^32*t^8.414 - (4*t^8.449)/(g1*g2^13) + (g2^44*t^8.454)/g1^4 - t^8.49/(g1^13*g2) + (g1^36*t^8.542)/g2^12 + 3*g1^24*t^8.583 + 4*g1^12*g2^12*t^8.624 + 2*g2^24*t^8.664 + t^8.7/(g1^9*g2^21) + (3*g2^36*t^8.705)/g1^12 + g1^37*g2^25*t^8.757 + (2*g1^28*t^8.793)/g2^20 + (g1^16*t^8.834)/g2^8 - 6*g1^4*g2^4*t^8.875 + (4*g2^16*t^8.915)/g1^8 + (5*g2^28*t^8.956)/g1^20 + g1^41*g2^5*t^8.967 + t^8.992/(g1^29*g2^17) - t^4.563/(g1^2*g2^2*y) - (g2^5*t^6.802)/(g1^7*y) - t^7.012/(g1^3*g2^15*y) + (g1^2*g2^2*t^7.437)/y + (g2^14*t^7.478)/(g1^10*y) + (g1^6*t^7.647)/(g2^18*y) + (3*t^7.688)/(g1^6*g2^6*y) + (g1^19*g2^7*t^7.822)/y + (2*g1^7*g2^19*t^7.863)/y + (3*g1^11*t^8.073)/(g2*y) + (5*g2^11*t^8.114)/(g1*y) + (3*g1^3*t^8.324)/(g2^9*y) + (2*g1^16*g2^16*t^8.498)/y + t^8.575/(g1^5*g2^17*y) + (2*t^8.615)/(g1^17*g2^5*y) + (g1^20*t^8.708)/(g2^4*y) + (3*g1^8*g2^8*t^8.749)/y + t^8.825/(g1^13*g2^25*y) + (g1^12*t^8.959)/(g2^12*y) - (t^4.563*y)/(g1^2*g2^2) - (g2^5*t^6.802*y)/g1^7 - (t^7.012*y)/(g1^3*g2^15) + g1^2*g2^2*t^7.437*y + (g2^14*t^7.478*y)/g1^10 + (g1^6*t^7.647*y)/g2^18 + (3*t^7.688*y)/(g1^6*g2^6) + g1^19*g2^7*t^7.822*y + 2*g1^7*g2^19*t^7.863*y + (3*g1^11*t^8.073*y)/g2 + (5*g2^11*t^8.114*y)/g1 + (3*g1^3*t^8.324*y)/g2^9 + 2*g1^16*g2^16*t^8.498*y + (t^8.575*y)/(g1^5*g2^17) + (2*t^8.615*y)/(g1^17*g2^5) + (g1^20*t^8.708*y)/g2^4 + 3*g1^8*g2^8*t^8.749*y + (t^8.825*y)/(g1^13*g2^25) + (g1^12*t^8.959*y)/g2^12


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2909 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ 0.6351 0.8325 0.7629 [M:[0.9472, 1.1585, 0.9472, 0.8415, 0.7377, 0.8415], q:[0.7368, 0.316], qb:[0.4198, 0.4217], phi:[0.5264]] t^2.208 + 2*t^2.213 + 2*t^2.525 + 2*t^2.842 + t^3.47 + t^3.475 + t^3.792 + t^4.098 + t^4.104 + t^4.109 + t^4.415 + 2*t^4.421 + 3*t^4.426 + 2*t^4.732 + 4*t^4.738 + 5*t^5.049 + 4*t^5.055 + 4*t^5.366 + t^5.678 + 4*t^5.683 + t^5.689 + t^5.994 - t^6. - t^4.579/y - t^4.579*y detail
2910 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}q_{1}\tilde{q}_{1}$ 0.6516 0.8578 0.7596 [M:[0.9665, 1.1006, 0.9665, 0.8994, 0.7338, 0.8165, 0.8009], q:[0.7416, 0.2919], qb:[0.4575, 0.4419], phi:[0.5168]] 2*t^2.201 + t^2.248 + t^2.403 + t^2.449 + t^2.698 + 2*t^2.899 + t^3.302 + t^3.752 + t^4.202 + t^4.248 + t^4.295 + 3*t^4.403 + 2*t^4.45 + t^4.496 + 2*t^4.604 + 3*t^4.651 + t^4.698 + t^4.806 + t^4.852 + t^4.899 + 2*t^4.9 + t^4.946 + 5*t^5.101 + 3*t^5.148 + 2*t^5.302 + 2*t^5.349 + t^5.396 + t^5.503 + 2*t^5.597 + t^5.705 + t^5.751 + 2*t^5.799 + t^5.953 - 2*t^6. - t^4.55/y - t^4.55*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
545 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{1}$ 0.6216 0.8089 0.7684 [M:[0.9496, 1.1511, 0.9496, 0.8489, 0.7292], q:[0.7374, 0.313], qb:[0.4326, 0.4162], phi:[0.5252]] 2*t^2.188 + t^2.237 + t^2.547 + 2*t^2.849 + t^3.453 + t^3.461 + t^3.51 + t^3.763 + t^4.073 + t^4.122 + t^4.171 + 3*t^4.375 + 2*t^4.424 + t^4.474 + 2*t^4.734 + t^4.783 + 4*t^5.036 + 2*t^5.086 + t^5.093 + 2*t^5.395 + t^5.641 + 2*t^5.649 + 5*t^5.698 + t^5.747 + t^5.951 - 2*t^6. - t^4.576/y - t^4.576*y detail