Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1861 SU2adj1nf2 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{1}M_{5}$ + ${ }M_{6}q_{2}\tilde{q}_{2}$ 0.6896 0.8756 0.7876 [M:[0.7038, 0.7038, 0.6833, 0.6901, 1.2962, 0.6901], q:[0.8155, 0.836], qb:[0.4807, 0.4739], phi:[0.3485]] [M:[[1, -5], [1, -5], [-8, 4], [-5, 1], [-1, 5], [-5, 1]], q:[[-4, 5], [5, -4]], qb:[[3, 0], [0, 3]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{4}$, ${ }M_{6}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{5}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{3}M_{6}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}M_{6}$, ${ }\phi_{1}^{4}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{3}M_{5}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }M_{4}M_{5}$, ${ }M_{5}M_{6}$, ${ }M_{3}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ ${}\phi_{1}^{3}\tilde{q}_{1}\tilde{q}_{2}$ -1 t^2.05 + 2*t^2.07 + t^2.091 + t^2.111 + t^2.864 + t^3.868 + t^3.889 + t^3.909 + t^4.1 + 2*t^4.12 + 4*t^4.141 + 3*t^4.161 + 3*t^4.182 + t^4.202 + t^4.223 + t^4.914 + 2*t^4.934 + 2*t^4.955 + t^4.975 + t^5.728 + t^5.918 + 3*t^5.939 + 3*t^5.959 + 2*t^5.98 - t^6. - t^6.02 - t^6.041 + t^6.15 + 2*t^6.17 + 4*t^6.191 + 7*t^6.211 + 6*t^6.232 + 6*t^6.252 + 4*t^6.272 + 3*t^6.293 + t^6.313 + t^6.334 + t^6.732 + t^6.753 + t^6.773 + t^6.964 + 2*t^6.984 + 4*t^7.005 + 3*t^7.025 + 2*t^7.045 + t^7.737 + t^7.757 + 2*t^7.777 + t^7.798 - t^7.839 - t^7.859 + t^7.968 + 3*t^7.989 + 6*t^8.009 + 5*t^8.03 + 2*t^8.05 - 4*t^8.07 - 4*t^8.091 - 5*t^8.111 - 2*t^8.132 - t^8.152 + t^8.2 + 2*t^8.22 + 4*t^8.241 + 7*t^8.261 + 11*t^8.282 + 10*t^8.302 + 11*t^8.322 + 8*t^8.343 + 7*t^8.363 + 4*t^8.384 + 3*t^8.404 + t^8.425 + t^8.445 + t^8.591 + t^8.782 + 3*t^8.802 + 3*t^8.823 + t^8.843 - 2*t^8.864 - 3*t^8.884 - 2*t^8.905 - t^4.045/y - t^6.095/y - (2*t^6.116)/y - t^6.136/y - t^6.157/y + (2*t^7.12)/y + (2*t^7.141)/y + (3*t^7.161)/y + (2*t^7.182)/y + t^7.202/y + t^7.914/y + (3*t^7.934)/y + (2*t^7.955)/y + (3*t^7.975)/y + t^7.995/y - t^8.145/y - (2*t^8.166)/y - (4*t^8.186)/y - (3*t^8.207)/y - (3*t^8.227)/y - t^8.247/y - t^8.268/y + t^8.918/y + (3*t^8.939)/y + (4*t^8.959)/y + (4*t^8.98)/y - t^4.045*y - t^6.095*y - 2*t^6.116*y - t^6.136*y - t^6.157*y + 2*t^7.12*y + 2*t^7.141*y + 3*t^7.161*y + 2*t^7.182*y + t^7.202*y + t^7.914*y + 3*t^7.934*y + 2*t^7.955*y + 3*t^7.975*y + t^7.995*y - t^8.145*y - 2*t^8.166*y - 4*t^8.186*y - 3*t^8.207*y - 3*t^8.227*y - t^8.247*y - t^8.268*y + t^8.918*y + 3*t^8.939*y + 4*t^8.959*y + 4*t^8.98*y (g2^4*t^2.05)/g1^8 + (2*g2*t^2.07)/g1^5 + t^2.091/(g1^2*g2^2) + (g1*t^2.111)/g2^5 + g1^3*g2^3*t^2.864 + (g2^8*t^3.868)/g1^4 + (g2^5*t^3.889)/g1 + g1^2*g2^2*t^3.909 + (g2^8*t^4.1)/g1^16 + (2*g2^5*t^4.12)/g1^13 + (4*g2^2*t^4.141)/g1^10 + (3*t^4.161)/(g1^7*g2) + (3*t^4.182)/(g1^4*g2^4) + t^4.202/(g1*g2^7) + (g1^2*t^4.223)/g2^10 + (g2^7*t^4.914)/g1^5 + (2*g2^4*t^4.934)/g1^2 + 2*g1*g2*t^4.955 + (g1^4*t^4.975)/g2^2 + g1^6*g2^6*t^5.728 + (g2^12*t^5.918)/g1^12 + (3*g2^9*t^5.939)/g1^9 + (3*g2^6*t^5.959)/g1^6 + (2*g2^3*t^5.98)/g1^3 - t^6. - (g1^3*t^6.02)/g2^3 - (g1^6*t^6.041)/g2^6 + (g2^12*t^6.15)/g1^24 + (2*g2^9*t^6.17)/g1^21 + (4*g2^6*t^6.191)/g1^18 + (7*g2^3*t^6.211)/g1^15 + (6*t^6.232)/g1^12 + (6*t^6.252)/(g1^9*g2^3) + (4*t^6.272)/(g1^6*g2^6) + (3*t^6.293)/(g1^3*g2^9) + t^6.313/g2^12 + (g1^3*t^6.334)/g2^15 + (g2^11*t^6.732)/g1 + g1^2*g2^8*t^6.753 + g1^5*g2^5*t^6.773 + (g2^11*t^6.964)/g1^13 + (2*g2^8*t^6.984)/g1^10 + (4*g2^5*t^7.005)/g1^7 + (3*g2^2*t^7.025)/g1^4 + (2*t^7.045)/(g1*g2) + (g2^16*t^7.737)/g1^8 + (g2^13*t^7.757)/g1^5 + (2*g2^10*t^7.777)/g1^2 + g1*g2^7*t^7.798 - g1^7*g2*t^7.839 - (g1^10*t^7.859)/g2^2 + (g2^16*t^7.968)/g1^20 + (3*g2^13*t^7.989)/g1^17 + (6*g2^10*t^8.009)/g1^14 + (5*g2^7*t^8.03)/g1^11 + (2*g2^4*t^8.05)/g1^8 - (4*g2*t^8.07)/g1^5 - (4*t^8.091)/(g1^2*g2^2) - (5*g1*t^8.111)/g2^5 - (2*g1^4*t^8.132)/g2^8 - (g1^7*t^8.152)/g2^11 + (g2^16*t^8.2)/g1^32 + (2*g2^13*t^8.22)/g1^29 + (4*g2^10*t^8.241)/g1^26 + (7*g2^7*t^8.261)/g1^23 + (11*g2^4*t^8.282)/g1^20 + (10*g2*t^8.302)/g1^17 + (11*t^8.322)/(g1^14*g2^2) + (8*t^8.343)/(g1^11*g2^5) + (7*t^8.363)/(g1^8*g2^8) + (4*t^8.384)/(g1^5*g2^11) + (3*t^8.404)/(g1^2*g2^14) + (g1*t^8.425)/g2^17 + (g1^4*t^8.445)/g2^20 + g1^9*g2^9*t^8.591 + (g2^15*t^8.782)/g1^9 + (3*g2^12*t^8.802)/g1^6 + (3*g2^9*t^8.823)/g1^3 + g2^6*t^8.843 - 2*g1^3*g2^3*t^8.864 - 3*g1^6*t^8.884 - (2*g1^9*t^8.905)/g2^3 - t^4.045/(g1*g2*y) - (g2^3*t^6.095)/(g1^9*y) - (2*t^6.116)/(g1^6*y) - t^6.136/(g1^3*g2^3*y) - t^6.157/(g2^6*y) + (2*g2^5*t^7.12)/(g1^13*y) + (2*g2^2*t^7.141)/(g1^10*y) + (3*t^7.161)/(g1^7*g2*y) + (2*t^7.182)/(g1^4*g2^4*y) + t^7.202/(g1*g2^7*y) + (g2^7*t^7.914)/(g1^5*y) + (3*g2^4*t^7.934)/(g1^2*y) + (2*g1*g2*t^7.955)/y + (3*g1^4*t^7.975)/(g2^2*y) + (g1^7*t^7.995)/(g2^5*y) - (g2^7*t^8.145)/(g1^17*y) - (2*g2^4*t^8.166)/(g1^14*y) - (4*g2*t^8.186)/(g1^11*y) - (3*t^8.207)/(g1^8*g2^2*y) - (3*t^8.227)/(g1^5*g2^5*y) - t^8.247/(g1^2*g2^8*y) - (g1*t^8.268)/(g2^11*y) + (g2^12*t^8.918)/(g1^12*y) + (3*g2^9*t^8.939)/(g1^9*y) + (4*g2^6*t^8.959)/(g1^6*y) + (4*g2^3*t^8.98)/(g1^3*y) - (t^4.045*y)/(g1*g2) - (g2^3*t^6.095*y)/g1^9 - (2*t^6.116*y)/g1^6 - (t^6.136*y)/(g1^3*g2^3) - (t^6.157*y)/g2^6 + (2*g2^5*t^7.12*y)/g1^13 + (2*g2^2*t^7.141*y)/g1^10 + (3*t^7.161*y)/(g1^7*g2) + (2*t^7.182*y)/(g1^4*g2^4) + (t^7.202*y)/(g1*g2^7) + (g2^7*t^7.914*y)/g1^5 + (3*g2^4*t^7.934*y)/g1^2 + 2*g1*g2*t^7.955*y + (3*g1^4*t^7.975*y)/g2^2 + (g1^7*t^7.995*y)/g2^5 - (g2^7*t^8.145*y)/g1^17 - (2*g2^4*t^8.166*y)/g1^14 - (4*g2*t^8.186*y)/g1^11 - (3*t^8.207*y)/(g1^8*g2^2) - (3*t^8.227*y)/(g1^5*g2^5) - (t^8.247*y)/(g1^2*g2^8) - (g1*t^8.268*y)/g2^11 + (g2^12*t^8.918*y)/g1^12 + (3*g2^9*t^8.939*y)/g1^9 + (4*g2^6*t^8.959*y)/g1^6 + (4*g2^3*t^8.98*y)/g1^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
484 SU2adj1nf2 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{1}M_{5}$ 0.669 0.8353 0.8009 [M:[0.7048, 0.7048, 0.6889, 0.6942, 1.2952], q:[0.8172, 0.8331], qb:[0.4781, 0.4728], phi:[0.3497]] t^2.067 + t^2.082 + t^2.098 + t^2.114 + t^2.852 + t^3.87 + t^3.886 + t^3.902 + t^3.918 + t^4.133 + t^4.149 + 2*t^4.165 + 2*t^4.181 + 2*t^4.197 + t^4.213 + t^4.229 + t^4.919 + t^4.935 + 2*t^4.951 + t^4.967 + t^5.705 + t^5.936 + 2*t^5.952 + 2*t^5.968 + 2*t^5.984 - t^4.049/y - t^4.049*y detail