Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1861 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1^2$ + $ M_2M_5$ + $ M_1M_5$ + $ M_6q_2\tilde{q}_2$ 0.6896 0.8756 0.7876 [X:[], M:[0.7038, 0.7038, 0.6833, 0.6901, 1.2962, 0.6901], q:[0.8155, 0.836], qb:[0.4807, 0.4739], phi:[0.3485]] [X:[], M:[[1, -5], [1, -5], [-8, 4], [-5, 1], [-1, 5], [-5, 1]], q:[[-4, 5], [5, -4]], qb:[[3, 0], [0, 3]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_4$, $ M_6$, $ \phi_1^2$, $ M_1$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_2$, $ M_5$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_3^2$, $ M_3M_4$, $ M_3M_6$, $ M_4^2$, $ M_4M_6$, $ M_6^2$, $ M_3\phi_1^2$, $ M_1M_3$, $ M_4\phi_1^2$, $ M_6\phi_1^2$, $ M_1M_4$, $ M_1M_6$, $ \phi_1^4$, $ M_1\phi_1^2$, $ M_1^2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_6\tilde{q}_1\tilde{q}_2$, $ q_1q_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_3q_1\tilde{q}_2$, $ M_3M_5$, $ M_4q_1\tilde{q}_2$, $ M_6q_1\tilde{q}_2$, $ M_4M_5$, $ M_5M_6$, $ M_3\phi_1\tilde{q}_1\tilde{q}_2$, $ M_5\phi_1^2$, $ M_4\phi_1\tilde{q}_1\tilde{q}_2$, $ M_6\phi_1\tilde{q}_1\tilde{q}_2$ $\phi_1^3\tilde{q}_1\tilde{q}_2$ -1 t^2.05 + 2*t^2.07 + t^2.09 + t^2.11 + t^2.86 + t^3.87 + t^3.89 + t^3.91 + t^4.1 + 2*t^4.12 + 4*t^4.14 + 3*t^4.16 + 3*t^4.18 + t^4.2 + t^4.22 + t^4.91 + 2*t^4.93 + 2*t^4.95 + t^4.98 + t^5.73 + t^5.92 + 3*t^5.94 + 3*t^5.96 + 2*t^5.98 - t^6. - t^6.02 - t^6.04 + t^6.15 + 2*t^6.17 + 4*t^6.19 + 7*t^6.21 + 6*t^6.23 + 6*t^6.25 + 4*t^6.27 + 3*t^6.29 + t^6.31 + t^6.33 + t^6.73 + t^6.75 + t^6.77 + t^6.96 + 2*t^6.98 + 4*t^7. + 3*t^7.02 + 2*t^7.05 + t^7.74 + t^7.76 + 2*t^7.78 + t^7.8 - t^7.84 - t^7.86 + t^7.97 + 3*t^7.99 + 6*t^8.01 + 5*t^8.03 + 2*t^8.05 - 4*t^8.07 - 4*t^8.09 - 5*t^8.11 - 2*t^8.13 - t^8.15 + t^8.2 + 2*t^8.22 + 4*t^8.24 + 7*t^8.26 + 11*t^8.28 + 10*t^8.3 + 11*t^8.32 + 8*t^8.34 + 7*t^8.36 + 4*t^8.38 + 3*t^8.4 + t^8.42 + t^8.45 + t^8.59 + t^8.78 + 3*t^8.8 + 3*t^8.82 + t^8.84 - 2*t^8.86 - 3*t^8.88 - 2*t^8.9 - t^4.05/y - t^6.1/y - (2*t^6.12)/y - t^6.14/y - t^6.16/y + (2*t^7.12)/y + (2*t^7.14)/y + (3*t^7.16)/y + (2*t^7.18)/y + t^7.2/y + t^7.91/y + (3*t^7.93)/y + (2*t^7.95)/y + (3*t^7.98)/y + t^8./y - t^8.15/y - (2*t^8.17)/y - (4*t^8.19)/y - (3*t^8.21)/y - (3*t^8.23)/y - t^8.25/y - t^8.27/y + t^8.92/y + (3*t^8.94)/y + (4*t^8.96)/y + (4*t^8.98)/y - t^4.05*y - t^6.1*y - 2*t^6.12*y - t^6.14*y - t^6.16*y + 2*t^7.12*y + 2*t^7.14*y + 3*t^7.16*y + 2*t^7.18*y + t^7.2*y + t^7.91*y + 3*t^7.93*y + 2*t^7.95*y + 3*t^7.98*y + t^8.*y - t^8.15*y - 2*t^8.17*y - 4*t^8.19*y - 3*t^8.21*y - 3*t^8.23*y - t^8.25*y - t^8.27*y + t^8.92*y + 3*t^8.94*y + 4*t^8.96*y + 4*t^8.98*y (g2^4*t^2.05)/g1^8 + (2*g2*t^2.07)/g1^5 + t^2.09/(g1^2*g2^2) + (g1*t^2.11)/g2^5 + g1^3*g2^3*t^2.86 + (g2^8*t^3.87)/g1^4 + (g2^5*t^3.89)/g1 + g1^2*g2^2*t^3.91 + (g2^8*t^4.1)/g1^16 + (2*g2^5*t^4.12)/g1^13 + (4*g2^2*t^4.14)/g1^10 + (3*t^4.16)/(g1^7*g2) + (3*t^4.18)/(g1^4*g2^4) + t^4.2/(g1*g2^7) + (g1^2*t^4.22)/g2^10 + (g2^7*t^4.91)/g1^5 + (2*g2^4*t^4.93)/g1^2 + 2*g1*g2*t^4.95 + (g1^4*t^4.98)/g2^2 + g1^6*g2^6*t^5.73 + (g2^12*t^5.92)/g1^12 + (3*g2^9*t^5.94)/g1^9 + (3*g2^6*t^5.96)/g1^6 + (2*g2^3*t^5.98)/g1^3 - t^6. - (g1^3*t^6.02)/g2^3 - (g1^6*t^6.04)/g2^6 + (g2^12*t^6.15)/g1^24 + (2*g2^9*t^6.17)/g1^21 + (4*g2^6*t^6.19)/g1^18 + (7*g2^3*t^6.21)/g1^15 + (6*t^6.23)/g1^12 + (6*t^6.25)/(g1^9*g2^3) + (4*t^6.27)/(g1^6*g2^6) + (3*t^6.29)/(g1^3*g2^9) + t^6.31/g2^12 + (g1^3*t^6.33)/g2^15 + (g2^11*t^6.73)/g1 + g1^2*g2^8*t^6.75 + g1^5*g2^5*t^6.77 + (g2^11*t^6.96)/g1^13 + (2*g2^8*t^6.98)/g1^10 + (4*g2^5*t^7.)/g1^7 + (3*g2^2*t^7.02)/g1^4 + (2*t^7.05)/(g1*g2) + (g2^16*t^7.74)/g1^8 + (g2^13*t^7.76)/g1^5 + (2*g2^10*t^7.78)/g1^2 + g1*g2^7*t^7.8 - g1^7*g2*t^7.84 - (g1^10*t^7.86)/g2^2 + (g2^16*t^7.97)/g1^20 + (3*g2^13*t^7.99)/g1^17 + (6*g2^10*t^8.01)/g1^14 + (5*g2^7*t^8.03)/g1^11 + (2*g2^4*t^8.05)/g1^8 - (4*g2*t^8.07)/g1^5 - (4*t^8.09)/(g1^2*g2^2) - (5*g1*t^8.11)/g2^5 - (2*g1^4*t^8.13)/g2^8 - (g1^7*t^8.15)/g2^11 + (g2^16*t^8.2)/g1^32 + (2*g2^13*t^8.22)/g1^29 + (4*g2^10*t^8.24)/g1^26 + (7*g2^7*t^8.26)/g1^23 + (11*g2^4*t^8.28)/g1^20 + (10*g2*t^8.3)/g1^17 + (11*t^8.32)/(g1^14*g2^2) + (8*t^8.34)/(g1^11*g2^5) + (7*t^8.36)/(g1^8*g2^8) + (4*t^8.38)/(g1^5*g2^11) + (3*t^8.4)/(g1^2*g2^14) + (g1*t^8.42)/g2^17 + (g1^4*t^8.45)/g2^20 + g1^9*g2^9*t^8.59 + (g2^15*t^8.78)/g1^9 + (3*g2^12*t^8.8)/g1^6 + (3*g2^9*t^8.82)/g1^3 + g2^6*t^8.84 - 2*g1^3*g2^3*t^8.86 - 3*g1^6*t^8.88 - (2*g1^9*t^8.9)/g2^3 - t^4.05/(g1*g2*y) - (g2^3*t^6.1)/(g1^9*y) - (2*t^6.12)/(g1^6*y) - t^6.14/(g1^3*g2^3*y) - t^6.16/(g2^6*y) + (2*g2^5*t^7.12)/(g1^13*y) + (2*g2^2*t^7.14)/(g1^10*y) + (3*t^7.16)/(g1^7*g2*y) + (2*t^7.18)/(g1^4*g2^4*y) + t^7.2/(g1*g2^7*y) + (g2^7*t^7.91)/(g1^5*y) + (3*g2^4*t^7.93)/(g1^2*y) + (2*g1*g2*t^7.95)/y + (3*g1^4*t^7.98)/(g2^2*y) + (g1^7*t^8.)/(g2^5*y) - (g2^7*t^8.15)/(g1^17*y) - (2*g2^4*t^8.17)/(g1^14*y) - (4*g2*t^8.19)/(g1^11*y) - (3*t^8.21)/(g1^8*g2^2*y) - (3*t^8.23)/(g1^5*g2^5*y) - t^8.25/(g1^2*g2^8*y) - (g1*t^8.27)/(g2^11*y) + (g2^12*t^8.92)/(g1^12*y) + (3*g2^9*t^8.94)/(g1^9*y) + (4*g2^6*t^8.96)/(g1^6*y) + (4*g2^3*t^8.98)/(g1^3*y) - (t^4.05*y)/(g1*g2) - (g2^3*t^6.1*y)/g1^9 - (2*t^6.12*y)/g1^6 - (t^6.14*y)/(g1^3*g2^3) - (t^6.16*y)/g2^6 + (2*g2^5*t^7.12*y)/g1^13 + (2*g2^2*t^7.14*y)/g1^10 + (3*t^7.16*y)/(g1^7*g2) + (2*t^7.18*y)/(g1^4*g2^4) + (t^7.2*y)/(g1*g2^7) + (g2^7*t^7.91*y)/g1^5 + (3*g2^4*t^7.93*y)/g1^2 + 2*g1*g2*t^7.95*y + (3*g1^4*t^7.98*y)/g2^2 + (g1^7*t^8.*y)/g2^5 - (g2^7*t^8.15*y)/g1^17 - (2*g2^4*t^8.17*y)/g1^14 - (4*g2*t^8.19*y)/g1^11 - (3*t^8.21*y)/(g1^8*g2^2) - (3*t^8.23*y)/(g1^5*g2^5) - (t^8.25*y)/(g1^2*g2^8) - (g1*t^8.27*y)/g2^11 + (g2^12*t^8.92*y)/g1^12 + (3*g2^9*t^8.94*y)/g1^9 + (4*g2^6*t^8.96*y)/g1^6 + (4*g2^3*t^8.98*y)/g1^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
484 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3q_2\tilde{q}_1$ + $ M_4\phi_1\tilde{q}_1^2$ + $ M_2M_5$ + $ M_1M_5$ 0.669 0.8353 0.8009 [X:[], M:[0.7048, 0.7048, 0.6889, 0.6942, 1.2952], q:[0.8172, 0.8331], qb:[0.4781, 0.4728], phi:[0.3497]] t^2.07 + t^2.08 + t^2.1 + t^2.11 + t^2.85 + t^3.87 + t^3.89 + t^3.9 + t^3.92 + t^4.13 + t^4.15 + 2*t^4.16 + 2*t^4.18 + 2*t^4.2 + t^4.21 + t^4.23 + t^4.92 + t^4.93 + 2*t^4.95 + t^4.97 + t^5.7 + t^5.94 + 2*t^5.95 + 2*t^5.97 + 2*t^5.98 - t^4.05/y - t^4.05*y detail