Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1851 SU2adj1nf2 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{1}M_{2}$ + ${ }\phi_{1}\tilde{q}_{1}^{3}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{1}M_{4}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ 0.5745 0.7465 0.7697 [M:[1.0256, 0.9744, 0.7253, 0.9744, 0.674], q:[0.5495, 1.0256], qb:[0.4249, 0.3004], phi:[0.4249]] [M:[[7], [-7], [3], [-7], [-11]], q:[[-6], [7]], qb:[[-1], [4]], phi:[[-1]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{5}$, ${ }M_{3}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }M_{4}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }q_{1}q_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{4}M_{5}$, ${ }M_{2}M_{3}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}^{4}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{5}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{4}^{2}$ ${}\phi_{1}^{3}\tilde{q}_{1}\tilde{q}_{2}$ -2 t^2.022 + 2*t^2.176 + 2*t^2.549 + 2*t^2.923 + t^3.451 + t^4.044 + 2*t^4.198 + 4*t^4.352 + 2*t^4.572 + 5*t^4.725 + 2*t^4.945 + 6*t^5.099 + 4*t^5.473 + t^5.626 + 3*t^5.846 - 2*t^6. + t^6.066 + 2*t^6.22 + 3*t^6.374 + 4*t^6.527 + 2*t^6.594 + 4*t^6.747 + 6*t^6.901 + 2*t^6.967 + 6*t^7.121 + 10*t^7.275 - t^7.428 + 4*t^7.495 + 9*t^7.648 - t^7.802 + 3*t^7.868 + 6*t^8.022 + t^8.088 - 8*t^8.176 + 2*t^8.242 + 7*t^8.396 - 4*t^8.549 + 2*t^8.616 + 4*t^8.703 + 8*t^8.769 - 4*t^8.923 + 2*t^8.989 - t^4.275/y - t^6.297/y - t^6.451/y - t^6.824/y + t^7.198/y + (2*t^7.352)/y + (2*t^7.572)/y + (5*t^7.725)/y + (2*t^7.945)/y + (6*t^8.099)/y + t^8.253/y - t^8.319/y + (4*t^8.473)/y + t^8.626/y - t^4.275*y - t^6.297*y - t^6.451*y - t^6.824*y + t^7.198*y + 2*t^7.352*y + 2*t^7.572*y + 5*t^7.725*y + 2*t^7.945*y + 6*t^8.099*y + t^8.253*y - t^8.319*y + 4*t^8.473*y + t^8.626*y t^2.022/g1^11 + 2*g1^3*t^2.176 + (2*t^2.549)/g1^2 + (2*t^2.923)/g1^7 + g1^2*t^3.451 + t^4.044/g1^22 + (2*t^4.198)/g1^8 + 4*g1^6*t^4.352 + (2*t^4.572)/g1^13 + 5*g1*t^4.725 + (2*t^4.945)/g1^18 + (6*t^5.099)/g1^4 + (4*t^5.473)/g1^9 + g1^5*t^5.626 + (3*t^5.846)/g1^14 - 2*t^6. + t^6.066/g1^33 + (2*t^6.22)/g1^19 + (3*t^6.374)/g1^5 + 4*g1^9*t^6.527 + (2*t^6.594)/g1^24 + (4*t^6.747)/g1^10 + 6*g1^4*t^6.901 + (2*t^6.967)/g1^29 + (6*t^7.121)/g1^15 + (10*t^7.275)/g1 - g1^13*t^7.428 + (4*t^7.495)/g1^20 + (9*t^7.648)/g1^6 - g1^8*t^7.802 + (3*t^7.868)/g1^25 + (6*t^8.022)/g1^11 + t^8.088/g1^44 - 8*g1^3*t^8.176 + (2*t^8.242)/g1^30 + (7*t^8.396)/g1^16 - (4*t^8.549)/g1^2 + (2*t^8.616)/g1^35 + 4*g1^12*t^8.703 + (8*t^8.769)/g1^21 - (4*t^8.923)/g1^7 + (2*t^8.989)/g1^40 - t^4.275/(g1*y) - t^6.297/(g1^12*y) - (g1^2*t^6.451)/y - t^6.824/(g1^3*y) + t^7.198/(g1^8*y) + (2*g1^6*t^7.352)/y + (2*t^7.572)/(g1^13*y) + (5*g1*t^7.725)/y + (2*t^7.945)/(g1^18*y) + (6*t^8.099)/(g1^4*y) + (g1^10*t^8.253)/y - t^8.319/(g1^23*y) + (4*t^8.473)/(g1^9*y) + (g1^5*t^8.626)/y - (t^4.275*y)/g1 - (t^6.297*y)/g1^12 - g1^2*t^6.451*y - (t^6.824*y)/g1^3 + (t^7.198*y)/g1^8 + 2*g1^6*t^7.352*y + (2*t^7.572*y)/g1^13 + 5*g1*t^7.725*y + (2*t^7.945*y)/g1^18 + (6*t^8.099*y)/g1^4 + g1^10*t^8.253*y - (t^8.319*y)/g1^23 + (4*t^8.473*y)/g1^9 + g1^5*t^8.626*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
462 SU2adj1nf2 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{1}M_{2}$ + ${ }\phi_{1}\tilde{q}_{1}^{3}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{1}M_{4}$ 0.5537 0.7053 0.7851 [M:[1.0224, 0.9776, 0.7239, 0.9776], q:[0.5522, 1.0224], qb:[0.4254, 0.2985], phi:[0.4254]] 2*t^2.172 + 2*t^2.552 + 2*t^2.933 + t^3.448 + t^3.963 + 4*t^4.343 + 5*t^4.724 + 6*t^5.104 + 3*t^5.485 + t^5.62 + 3*t^5.865 - 2*t^6. - t^4.276/y - t^4.276*y detail