Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
1848 | SU2adj1nf2 | ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{1}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}^{2}$ | 0.6522 | 0.82 | 0.7954 | [M:[1.177, 0.7464, 0.823, 0.823, 0.7082], q:[0.8038, 0.4497], qb:[0.3732, 0.8038], phi:[0.3923]] | [M:[[-6], [-14], [6], [6], [-24]], q:[[1], [13]], qb:[[-7], [1]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{5}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }M_{4}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{2}$, ${ }M_{5}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{2}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{4}M_{5}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{2}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}\tilde{q}_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{5}q_{1}q_{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ | ${}\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$ | 1 | t^2.125 + t^2.239 + t^2.354 + 2*t^2.469 + t^3.416 + t^3.531 + t^3.646 + t^3.761 + t^4.249 + t^4.364 + 2*t^4.479 + 3*t^4.593 + 3*t^4.708 + 3*t^4.823 + 3*t^4.938 + t^5.541 + 2*t^5.656 + 2*t^5.77 + 3*t^5.885 + t^6. + t^6.115 + t^6.23 + t^6.374 + t^6.488 + 2*t^6.603 + 4*t^6.718 + 5*t^6.833 + 6*t^6.948 + 6*t^7.062 + 4*t^7.177 + 2*t^7.292 + 2*t^7.407 + t^7.666 + 2*t^7.78 + 3*t^7.895 + 4*t^8.01 + 3*t^8.125 + t^8.239 + t^8.354 - 2*t^8.469 + t^8.498 - t^8.584 + t^8.613 + 2*t^8.728 + 4*t^8.843 + 6*t^8.957 - t^4.177/y - t^6.302/y - t^6.416/y - t^6.531/y - t^6.646/y + t^7.364/y + t^7.479/y + (3*t^7.593)/y + (3*t^7.708)/y + (3*t^7.823)/y + (2*t^7.938)/y + t^8.052/y - t^8.426/y + t^8.77/y + (3*t^8.885)/y - t^4.177*y - t^6.302*y - t^6.416*y - t^6.531*y - t^6.646*y + t^7.364*y + t^7.479*y + 3*t^7.593*y + 3*t^7.708*y + 3*t^7.823*y + 2*t^7.938*y + t^8.052*y - t^8.426*y + t^8.77*y + 3*t^8.885*y | t^2.125/g1^24 + t^2.239/g1^14 + t^2.354/g1^4 + 2*g1^6*t^2.469 + t^3.416/g1^16 + t^3.531/g1^6 + g1^4*t^3.646 + g1^14*t^3.761 + t^4.249/g1^48 + t^4.364/g1^38 + (2*t^4.479)/g1^28 + (3*t^4.593)/g1^18 + (3*t^4.708)/g1^8 + 3*g1^2*t^4.823 + 3*g1^12*t^4.938 + t^5.541/g1^40 + (2*t^5.656)/g1^30 + (2*t^5.77)/g1^20 + (3*t^5.885)/g1^10 + t^6. + g1^10*t^6.115 + g1^20*t^6.23 + t^6.374/g1^72 + t^6.488/g1^62 + (2*t^6.603)/g1^52 + (4*t^6.718)/g1^42 + (5*t^6.833)/g1^32 + (6*t^6.948)/g1^22 + (6*t^7.062)/g1^12 + (4*t^7.177)/g1^2 + 2*g1^8*t^7.292 + 2*g1^18*t^7.407 + t^7.666/g1^64 + (2*t^7.78)/g1^54 + (3*t^7.895)/g1^44 + (4*t^8.01)/g1^34 + (3*t^8.125)/g1^24 + t^8.239/g1^14 + t^8.354/g1^4 - 2*g1^6*t^8.469 + t^8.498/g1^96 - g1^16*t^8.584 + t^8.613/g1^86 + (2*t^8.728)/g1^76 + (4*t^8.843)/g1^66 + (6*t^8.957)/g1^56 - t^4.177/(g1^2*y) - t^6.302/(g1^26*y) - t^6.416/(g1^16*y) - t^6.531/(g1^6*y) - (g1^4*t^6.646)/y + t^7.364/(g1^38*y) + t^7.479/(g1^28*y) + (3*t^7.593)/(g1^18*y) + (3*t^7.708)/(g1^8*y) + (3*g1^2*t^7.823)/y + (2*g1^12*t^7.938)/y + (g1^22*t^8.052)/y - t^8.426/(g1^50*y) + t^8.77/(g1^20*y) + (3*t^8.885)/(g1^10*y) - (t^4.177*y)/g1^2 - (t^6.302*y)/g1^26 - (t^6.416*y)/g1^16 - (t^6.531*y)/g1^6 - g1^4*t^6.646*y + (t^7.364*y)/g1^38 + (t^7.479*y)/g1^28 + (3*t^7.593*y)/g1^18 + (3*t^7.708*y)/g1^8 + 3*g1^2*t^7.823*y + 2*g1^12*t^7.938*y + g1^22*t^8.052*y - (t^8.426*y)/g1^50 + (t^8.77*y)/g1^20 + (3*t^8.885*y)/g1^10 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
441 | SU2adj1nf2 | ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{1}M_{4}$ | 0.6321 | 0.7818 | 0.8086 | [M:[1.183, 0.7604, 0.817, 0.817], q:[0.8028, 0.4368], qb:[0.3802, 0.8028], phi:[0.3943]] | t^2.281 + t^2.366 + 2*t^2.451 + t^3.464 + t^3.549 + t^3.634 + t^3.719 + t^3.804 + t^4.562 + t^4.647 + 3*t^4.732 + 3*t^4.817 + 3*t^4.902 + t^5.746 + t^5.83 + 2*t^5.915 + t^6. - t^4.183/y - t^4.183*y | detail |