Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1843 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{4}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}q_{2}^{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{5}q_{1}\tilde{q}_{1}$ 0.6926 0.9092 0.7617 [M:[1.1557, 0.6887, 0.6887, 0.6887, 0.8113], q:[0.75, 0.4057], qb:[0.4387, 0.4057], phi:[0.5]] [M:[[1], [-2], [-2], [-2], [2]], q:[[0], [1]], qb:[[-2], [1]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{3}$, ${ }M_{4}$, ${ }M_{5}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }q_{1}q_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{3}M_{4}$, ${ }M_{4}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{3}M_{5}$, ${ }M_{4}M_{5}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}M_{4}$, ${ }M_{2}q_{1}q_{2}$, ${ }M_{3}q_{1}q_{2}$, ${ }M_{4}q_{1}q_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{5}$, ${ }M_{5}q_{1}q_{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}^{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ ${}q_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ -2 3*t^2.066 + 2*t^2.434 + t^2.533 + t^3. + 3*t^3.467 + 2*t^4.033 + 7*t^4.132 + 6*t^4.5 + 3*t^4.599 + 3*t^4.868 + 2*t^4.967 + 4*t^5.066 + 2*t^5.434 + 10*t^5.533 + 4*t^5.901 - 2*t^6. + 4*t^6.099 + 13*t^6.198 + 3*t^6.467 + 14*t^6.566 + 7*t^6.665 + 11*t^6.934 + 4*t^7.033 + 9*t^7.132 + 4*t^7.302 - t^7.401 + 6*t^7.5 + 21*t^7.599 + 2*t^7.868 + 10*t^7.967 - 6*t^8.066 + 8*t^8.165 + 22*t^8.264 + 5*t^8.335 - 6*t^8.434 + 3*t^8.533 + 24*t^8.632 + 13*t^8.731 + 2*t^8.901 - t^4.5/y - (3*t^6.566)/y - t^6.934/y + t^7.033/y + (3*t^7.132)/y + (6*t^7.5)/y + (3*t^7.599)/y + t^7.868/y + t^7.967/y + (4*t^8.066)/y + (5*t^8.434)/y + (10*t^8.533)/y - (6*t^8.632)/y + (6*t^8.901)/y - t^4.5*y - 3*t^6.566*y - t^6.934*y + t^7.033*y + 3*t^7.132*y + 6*t^7.5*y + 3*t^7.599*y + t^7.868*y + t^7.967*y + 4*t^8.066*y + 5*t^8.434*y + 10*t^8.533*y - 6*t^8.632*y + 6*t^8.901*y (3*t^2.066)/g1^2 + 2*g1^2*t^2.434 + t^2.533/g1 + t^3. + 3*g1*t^3.467 + (2*t^4.033)/g1 + (7*t^4.132)/g1^4 + 6*t^4.5 + (3*t^4.599)/g1^3 + 3*g1^4*t^4.868 + 2*g1*t^4.967 + (4*t^5.066)/g1^2 + 2*g1^2*t^5.434 + (10*t^5.533)/g1 + 4*g1^3*t^5.901 - 2*t^6. + (4*t^6.099)/g1^3 + (13*t^6.198)/g1^6 + 3*g1*t^6.467 + (14*t^6.566)/g1^2 + (7*t^6.665)/g1^5 + 11*g1^2*t^6.934 + (4*t^7.033)/g1 + (9*t^7.132)/g1^4 + 4*g1^6*t^7.302 - g1^3*t^7.401 + 6*t^7.5 + (21*t^7.599)/g1^3 + 2*g1^4*t^7.868 + 10*g1*t^7.967 - (6*t^8.066)/g1^2 + (8*t^8.165)/g1^5 + (22*t^8.264)/g1^8 + 5*g1^5*t^8.335 - 6*g1^2*t^8.434 + (3*t^8.533)/g1 + (24*t^8.632)/g1^4 + (13*t^8.731)/g1^7 + 2*g1^3*t^8.901 - t^4.5/y - (3*t^6.566)/(g1^2*y) - (g1^2*t^6.934)/y + t^7.033/(g1*y) + (3*t^7.132)/(g1^4*y) + (6*t^7.5)/y + (3*t^7.599)/(g1^3*y) + (g1^4*t^7.868)/y + (g1*t^7.967)/y + (4*t^8.066)/(g1^2*y) + (5*g1^2*t^8.434)/y + (10*t^8.533)/(g1*y) - (6*t^8.632)/(g1^4*y) + (6*g1^3*t^8.901)/y - t^4.5*y - (3*t^6.566*y)/g1^2 - g1^2*t^6.934*y + (t^7.033*y)/g1 + (3*t^7.132*y)/g1^4 + 6*t^7.5*y + (3*t^7.599*y)/g1^3 + g1^4*t^7.868*y + g1*t^7.967*y + (4*t^8.066*y)/g1^2 + 5*g1^2*t^8.434*y + (10*t^8.533*y)/g1 - (6*t^8.632*y)/g1^4 + 6*g1^3*t^8.901*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
408 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{4}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}q_{2}^{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ 0.6772 0.8843 0.7658 [M:[1.1628, 0.6744, 0.6744, 0.6744], q:[0.75, 0.4128], qb:[0.4244, 0.4128], phi:[0.5]] 3*t^2.023 + t^2.477 + t^2.512 + t^3. + 3*t^3.488 + t^3.523 + 2*t^4.012 + 7*t^4.046 + 3*t^4.5 + 3*t^4.535 + t^4.954 + t^4.988 + 4*t^5.023 + t^5.477 + 10*t^5.512 + 3*t^5.546 + t^5.965 - t^6. - t^4.5/y - t^4.5*y detail