Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1840 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{4}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{1}M_{4}$ + ${ }M_{5}q_{1}q_{2}$ 0.6502 0.8314 0.782 [M:[1.1994, 1.0997, 0.7008, 0.8006, 0.7992], q:[0.75, 0.4508], qb:[0.3497, 0.4494], phi:[0.5]] [M:[[2], [1], [-3], [-2], [3]], q:[[0], [-3]], qb:[[1], [2]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{5}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}M_{4}$, ${ }M_{5}^{2}$, ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{2}M_{5}$, ${ }M_{5}q_{1}\tilde{q}_{1}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{4}$, ${ }M_{4}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{5}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ ${}M_{4}q_{1}\tilde{q}_{2}$ -1 t^2.103 + 2*t^2.397 + t^2.402 + t^3. + 2*t^3.299 + 2*t^3.598 + t^3.902 + t^4.197 + t^4.201 + 2*t^4.205 + 2*t^4.5 + t^4.504 + 3*t^4.795 + 2*t^4.799 + t^4.803 + t^5.103 + 2*t^5.397 + 3*t^5.402 + 3*t^5.697 + 3*t^5.701 + 3*t^5.996 - t^6. + 2*t^6.299 + t^6.303 + 2*t^6.308 + 2*t^6.594 + 5*t^6.598 + 3*t^6.603 + 2*t^6.607 + 5*t^6.897 + t^6.902 + t^6.906 + 4*t^7.192 + 4*t^7.197 + t^7.201 + 2*t^7.205 + 2*t^7.5 + 3*t^7.504 + 4*t^7.795 + 3*t^7.799 + 4*t^7.803 + 4*t^8.094 + 3*t^8.098 - t^8.103 + t^8.107 + 5*t^8.393 - 2*t^8.397 + t^8.406 + 3*t^8.41 + 2*t^8.697 + 3*t^8.701 + 3*t^8.705 + 2*t^8.709 + 3*t^8.992 + 6*t^8.996 - t^4.5/y - t^6.603/y - t^6.897/y + t^7.201/y + (2*t^7.5)/y + t^7.504/y + t^7.795/y + t^7.799/y + (2*t^8.103)/y + (3*t^8.397)/y + (3*t^8.402)/y + (4*t^8.697)/y + (4*t^8.701)/y - t^8.705/y + (4*t^8.996)/y - t^4.5*y - t^6.603*y - t^6.897*y + t^7.201*y + 2*t^7.5*y + t^7.504*y + t^7.795*y + t^7.799*y + 2*t^8.103*y + 3*t^8.397*y + 3*t^8.402*y + 4*t^8.697*y + 4*t^8.701*y - t^8.705*y + 4*t^8.996*y t^2.103/g1^3 + 2*g1^3*t^2.397 + t^2.402/g1^2 + t^3. + 2*g1*t^3.299 + 2*g1^2*t^3.598 + t^3.902/g1^2 + g1^4*t^4.197 + t^4.201/g1 + (2*t^4.205)/g1^6 + 2*t^4.5 + t^4.504/g1^5 + 3*g1^6*t^4.795 + 2*g1*t^4.799 + t^4.803/g1^4 + t^5.103/g1^3 + 2*g1^3*t^5.397 + (3*t^5.402)/g1^2 + 3*g1^4*t^5.697 + (3*t^5.701)/g1 + 3*g1^5*t^5.996 - t^6. + 2*g1*t^6.299 + t^6.303/g1^4 + (2*t^6.308)/g1^9 + 2*g1^7*t^6.594 + 5*g1^2*t^6.598 + (3*t^6.603)/g1^3 + (2*t^6.607)/g1^8 + 5*g1^3*t^6.897 + t^6.902/g1^2 + t^6.906/g1^7 + 4*g1^9*t^7.192 + 4*g1^4*t^7.197 + t^7.201/g1 + (2*t^7.205)/g1^6 + 2*t^7.5 + (3*t^7.504)/g1^5 + 4*g1^6*t^7.795 + 3*g1*t^7.799 + (4*t^7.803)/g1^4 + 4*g1^7*t^8.094 + 3*g1^2*t^8.098 - t^8.103/g1^3 + t^8.107/g1^8 + 5*g1^8*t^8.393 - 2*g1^3*t^8.397 + t^8.406/g1^7 + (3*t^8.41)/g1^12 + 2*g1^4*t^8.697 + (3*t^8.701)/g1 + (3*t^8.705)/g1^6 + (2*t^8.709)/g1^11 + 3*g1^10*t^8.992 + 6*g1^5*t^8.996 - t^4.5/y - t^6.603/(g1^3*y) - (g1^3*t^6.897)/y + t^7.201/(g1*y) + (2*t^7.5)/y + t^7.504/(g1^5*y) + (g1^6*t^7.795)/y + (g1*t^7.799)/y + (2*t^8.103)/(g1^3*y) + (3*g1^3*t^8.397)/y + (3*t^8.402)/(g1^2*y) + (4*g1^4*t^8.697)/y + (4*t^8.701)/(g1*y) - t^8.705/(g1^6*y) + (4*g1^5*t^8.996)/y - t^4.5*y - (t^6.603*y)/g1^3 - g1^3*t^6.897*y + (t^7.201*y)/g1 + 2*t^7.5*y + (t^7.504*y)/g1^5 + g1^6*t^7.795*y + g1*t^7.799*y + (2*t^8.103*y)/g1^3 + 3*g1^3*t^8.397*y + (3*t^8.402*y)/g1^2 + 4*g1^4*t^8.697*y + (4*t^8.701*y)/g1 - (t^8.705*y)/g1^6 + 4*g1^5*t^8.996*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
398 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{4}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{1}M_{4}$ 0.6341 0.8036 0.7891 [M:[1.211, 1.1055, 0.6835, 0.789], q:[0.75, 0.4335], qb:[0.3555, 0.461], phi:[0.5]] t^2.05 + t^2.367 + t^2.45 + t^3. + 2*t^3.317 + t^3.55 + 2*t^3.633 + t^3.867 + 2*t^4.101 + t^4.183 + t^4.266 + t^4.417 + t^4.5 + t^4.734 + t^4.817 + t^4.899 + t^5.05 + 3*t^5.367 + t^5.45 + t^5.601 + 3*t^5.683 + t^5.766 + t^5.917 - t^4.5/y - t^4.5*y detail