Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1831 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{3}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ 0.6977 0.8713 0.8008 [M:[0.9913, 0.7877, 1.1105, 0.6686, 0.8895], q:[0.4549, 0.5538], qb:[0.4346, 0.7776], phi:[0.4448]] [M:[[1, -7], [-1, -1], [0, 4], [0, -12], [0, -4]], q:[[-1, -4], [0, 11]], qb:[[1, 0], [0, 1]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{2}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{4}$, ${ }M_{2}M_{5}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{5}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{5}$, ${ }M_{1}\phi_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ ${}$ -3 t^2.006 + t^2.363 + 2*t^2.669 + t^2.965 + t^2.974 + t^3.698 + t^3.942 + t^4.003 + t^4.012 + t^4.064 + t^4.3 + t^4.36 + t^4.369 + t^4.657 + 2*t^4.674 + t^4.726 + t^4.971 + t^4.98 + 2*t^5.032 + t^5.329 + 4*t^5.337 + 2*t^5.634 + t^5.643 + t^5.931 + 2*t^5.948 - 3*t^6. + t^6.009 + t^6.017 + t^6.069 - t^6.297 + t^6.305 - t^6.357 + 3*t^6.366 + t^6.375 + t^6.427 + 2*t^6.611 + t^6.663 + 2*t^6.671 + 2*t^6.68 + t^6.724 + 3*t^6.732 + t^6.907 + t^6.916 + t^6.968 + t^6.977 + t^6.986 + t^7.02 + t^7.029 + 2*t^7.038 + t^7.09 + t^7.265 - t^7.274 + 2*t^7.326 - t^7.334 + 4*t^7.343 + t^7.395 + t^7.622 - t^7.631 + 2*t^7.64 + t^7.648 - t^7.692 + 4*t^7.7 + t^7.761 + t^7.884 + t^7.945 + 2*t^7.954 - t^7.988 + t^7.997 + 3*t^8.006 + t^8.014 + t^8.023 + t^8.075 + t^8.127 + t^8.242 + 2*t^8.302 + 3*t^8.311 - 4*t^8.363 + t^8.372 + t^8.381 + t^8.424 + t^8.433 + 3*t^8.599 - t^8.608 + 3*t^8.617 - t^8.66 - 6*t^8.669 + 2*t^8.677 + 2*t^8.686 + t^8.729 + 3*t^8.738 + t^8.79 + t^8.896 + t^8.913 + 2*t^8.922 + t^8.957 - 5*t^8.965 - t^8.974 + t^8.983 + t^8.991 - t^4.334/y - t^6.34/y - t^6.698/y - t^7.003/y - t^7.308/y + t^7.36/y + t^7.369/y + t^7.666/y + (2*t^7.674)/y + (2*t^7.971)/y + t^7.98/y + (2*t^8.032)/y + (2*t^8.329)/y + (2*t^8.337)/y - t^8.346/y + (2*t^8.634)/y + (2*t^8.643)/y + t^8.939/y + t^8.948/y - t^4.334*y - t^6.34*y - t^6.698*y - t^7.003*y - t^7.308*y + t^7.36*y + t^7.369*y + t^7.666*y + 2*t^7.674*y + 2*t^7.971*y + t^7.98*y + 2*t^8.032*y + 2*t^8.329*y + 2*t^8.337*y - t^8.346*y + 2*t^8.634*y + 2*t^8.643*y + t^8.939*y + t^8.948*y t^2.006/g2^12 + t^2.363/(g1*g2) + (2*t^2.669)/g2^4 + g1*g2^11*t^2.965 + (g1*t^2.974)/g2^7 + t^3.698/(g1*g2^3) + (g1^2*t^3.942)/g2^2 + t^4.003/g2^6 + t^4.012/g2^24 + t^4.064/(g1^2*g2^10) + g1*g2^9*t^4.3 + (g2^5*t^4.36)/g1 + t^4.369/(g1*g2^13) + g2^20*t^4.657 + (2*t^4.674)/g2^16 + t^4.726/(g1^2*g2^2) + (g1*t^4.971)/g2 + (g1*t^4.98)/g2^19 + (2*t^5.032)/(g1*g2^5) + g2^10*t^5.329 + (4*t^5.337)/g2^8 + 2*g1*g2^7*t^5.634 + (g1*t^5.643)/g2^11 + g1^2*g2^22*t^5.931 + (2*g1^2*t^5.948)/g2^14 - 3*t^6. + t^6.009/g2^18 + t^6.017/g2^36 + t^6.069/(g1^2*g2^22) - g1*g2^15*t^6.297 + (g1*t^6.305)/g2^3 - (g2^11*t^6.357)/g1 + (3*t^6.366)/(g1*g2^7) + t^6.375/(g1*g2^25) + t^6.427/(g1^3*g2^11) + (2*g1^2*t^6.611)/g2^6 + g2^8*t^6.663 + (2*t^6.671)/g2^10 + (2*t^6.68)/g2^28 + (g2^4*t^6.724)/g1^2 + (3*t^6.732)/(g1^2*g2^14) + g1^3*g2^9*t^6.907 + (g1^3*t^6.916)/g2^9 + g1*g2^5*t^6.968 + (g1*t^6.977)/g2^13 + (g1*t^6.986)/g2^31 + (g2^19*t^7.02)/g1 + (g2*t^7.029)/g1 + (2*t^7.038)/(g1*g2^17) + t^7.09/(g1^3*g2^3) + g1^2*g2^20*t^7.265 - g1^2*g2^2*t^7.274 + 2*g2^16*t^7.326 - t^7.334/g2^2 + (4*t^7.343)/g2^20 + t^7.395/(g1^2*g2^6) + g1*g2^31*t^7.622 - g1*g2^13*t^7.631 + (2*g1*t^7.64)/g2^5 + (g1*t^7.648)/g2^23 - (g2^9*t^7.692)/g1 + (4*t^7.7)/(g1*g2^9) + t^7.761/(g1^3*g2^13) + (g1^4*t^7.884)/g2^4 + (g1^2*t^7.945)/g2^8 + (2*g1^2*t^7.954)/g2^26 - g2^24*t^7.988 + g2^6*t^7.997 + (3*t^8.006)/g2^12 + t^8.014/g2^30 + t^8.023/g2^48 + t^8.075/(g1^2*g2^34) + t^8.127/(g1^4*g2^20) + g1^3*g2^7*t^8.242 + 2*g1*g2^3*t^8.302 + (3*g1*t^8.311)/g2^15 - (4*t^8.363)/(g1*g2) + t^8.372/(g1*g2^19) + t^8.381/(g1*g2^37) + t^8.424/(g1^3*g2^5) + t^8.433/(g1^3*g2^23) + 3*g1^2*g2^18*t^8.599 - g1^2*t^8.608 + (3*g1^2*t^8.617)/g2^18 - g2^14*t^8.66 - (6*t^8.669)/g2^4 + (2*t^8.677)/g2^22 + (2*t^8.686)/g2^40 + t^8.729/(g1^2*g2^8) + (3*t^8.738)/(g1^2*g2^26) + t^8.79/(g1^4*g2^12) + g1^3*g2^33*t^8.896 + (g1^3*t^8.913)/g2^3 + (2*g1^3*t^8.922)/g2^21 + g1*g2^29*t^8.957 - 5*g1*g2^11*t^8.965 - (g1*t^8.974)/g2^7 + (g1*t^8.983)/g2^25 + (g1*t^8.991)/g2^43 - t^4.334/(g2^2*y) - t^6.34/(g2^14*y) - t^6.698/(g1*g2^3*y) - t^7.003/(g2^6*y) - (g1*t^7.308)/(g2^9*y) + (g2^5*t^7.36)/(g1*y) + t^7.369/(g1*g2^13*y) + (g2^2*t^7.666)/y + (2*t^7.674)/(g2^16*y) + (2*g1*t^7.971)/(g2*y) + (g1*t^7.98)/(g2^19*y) + (2*t^8.032)/(g1*g2^5*y) + (2*g2^10*t^8.329)/y + (2*t^8.337)/(g2^8*y) - t^8.346/(g2^26*y) + (2*g1*g2^7*t^8.634)/y + (2*g1*t^8.643)/(g2^11*y) + (g1^2*g2^4*t^8.939)/y + (g1^2*t^8.948)/(g2^14*y) - (t^4.334*y)/g2^2 - (t^6.34*y)/g2^14 - (t^6.698*y)/(g1*g2^3) - (t^7.003*y)/g2^6 - (g1*t^7.308*y)/g2^9 + (g2^5*t^7.36*y)/g1 + (t^7.369*y)/(g1*g2^13) + g2^2*t^7.666*y + (2*t^7.674*y)/g2^16 + (2*g1*t^7.971*y)/g2 + (g1*t^7.98*y)/g2^19 + (2*t^8.032*y)/(g1*g2^5) + 2*g2^10*t^8.329*y + (2*t^8.337*y)/g2^8 - (t^8.346*y)/g2^26 + 2*g1*g2^7*t^8.634*y + (2*g1*t^8.643*y)/g2^11 + g1^2*g2^4*t^8.939*y + (g1^2*t^8.948*y)/g2^14


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
373 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{3}M_{5}$ 0.7211 0.8891 0.811 [M:[0.9247, 0.9247, 1.0753, 0.774, 0.9247], q:[0.4623, 0.613], qb:[0.4623, 0.613], phi:[0.4623]] t^2.322 + 4*t^2.774 + 2*t^3.226 + 3*t^4.161 + 4*t^4.613 + t^4.644 + 3*t^5.065 + 4*t^5.096 + 8*t^5.548 - t^4.387/y - t^4.387*y detail