Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1829 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_5\phi_1^2$ + $ \phi_1q_1\tilde{q}_2$ 0.6465 0.809 0.7991 [X:[], M:[0.8, 0.8, 0.8, 0.8, 1.2], q:[0.8, 0.4], qb:[0.4, 0.8], phi:[0.4]] [X:[], M:[[1, 1], [-1, -1], [-1, 1], [1, -1], [0, 0]], q:[[0, -1], [-1, 0]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] 2 {a: 1293/2000, c: 809/1000, M1: 4/5, M2: 4/5, M3: 4/5, M4: 4/5, M5: 6/5, q1: 4/5, q2: 2/5, qb1: 2/5, qb2: 4/5, phi1: 2/5}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_2$, $ M_3$, $ M_4$, $ \phi_1^2$, $ M_2$, $ M_4$, $ M_3$, $ M_1$, $ M_5$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_2^2$, $ \phi_1\tilde{q}_1^2$, $ M_1^2$, $ M_1M_2$, $ M_2^2$, $ M_1M_3$, $ M_2M_3$, $ M_3^2$, $ M_1M_4$, $ M_2M_4$, $ M_3M_4$, $ M_4^2$, $ M_1\phi_1^2$, $ M_2\phi_1^2$, $ M_3\phi_1^2$, $ M_4\phi_1^2$, $ \phi_1^4$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_2M_3$, $ M_1M_4$, $ M_2M_4$, $ M_2^2$, $ M_4^2$, $ M_2\phi_1^2$, $ \phi_1q_1q_2$, $ M_4\phi_1^2$, $ \phi_1q_1\tilde{q}_1$, $ M_3\phi_1^2$, $ \phi_1q_2\tilde{q}_2$, $ M_1\phi_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_1M_3$, $ M_3^2$, $ M_1^2$ $M_1M_5$, $ M_2M_5$, $ M_3M_5$, $ M_4M_5$, $ \phi_1q_1^2$, $ M_2\phi_1q_2^2$, $ M_3\phi_1q_2^2$, $ M_4\phi_1q_2^2$, $ \phi_1^3q_2^2$, $ M_3\phi_1q_2\tilde{q}_1$, $ M_4\phi_1q_2\tilde{q}_1$, $ \phi_1^3q_2\tilde{q}_1$, $ M_1\phi_1\tilde{q}_1^2$, $ M_3\phi_1\tilde{q}_1^2$, $ M_4\phi_1\tilde{q}_1^2$, $ \phi_1^3\tilde{q}_1^2$, $ \phi_1\tilde{q}_2^2$ 11 5*t^2.4 + 4*t^3.6 + 16*t^4.8 + 11*t^6. + 33*t^7.2 + 12*t^8.4 - t^4.2/y - (4*t^6.6)/y + (14*t^7.8)/y - t^4.2*y - 4*t^6.6*y + 14*t^7.8*y t^2.4 + t^2.4/(g1*g2) + (g1*t^2.4)/g2 + (g2*t^2.4)/g1 + g1*g2*t^2.4 + 2*t^3.6 + t^3.6/g1^2 + g1^2*t^3.6 + 4*t^4.8 + t^4.8/g1^2 + g1^2*t^4.8 + t^4.8/g2^2 + t^4.8/(g1^2*g2^2) + (g1^2*t^4.8)/g2^2 + t^4.8/(g1*g2) + (g1*t^4.8)/g2 + (g2*t^4.8)/g1 + g1*g2*t^4.8 + g2^2*t^4.8 + (g2^2*t^4.8)/g1^2 + g1^2*g2^2*t^4.8 - t^6. + t^6./(g1^3*g2) + (2*t^6.)/(g1*g2) + (2*g1*t^6.)/g2 + (g1^3*t^6.)/g2 + (g2*t^6.)/g1^3 + (2*g2*t^6.)/g1 + 2*g1*g2*t^6. + g1^3*g2*t^6. + 3*t^7.2 + t^7.2/g1^4 + t^7.2/g1^2 + g1^2*t^7.2 + g1^4*t^7.2 + t^7.2/(g1^3*g2^3) + t^7.2/(g1*g2^3) + (g1*t^7.2)/g2^3 + (g1^3*t^7.2)/g2^3 + t^7.2/g2^2 + t^7.2/(g1^2*g2^2) + (g1^2*t^7.2)/g2^2 + t^7.2/(g1^3*g2) + (2*t^7.2)/(g1*g2) + (2*g1*t^7.2)/g2 + (g1^3*t^7.2)/g2 + (g2*t^7.2)/g1^3 + (2*g2*t^7.2)/g1 + 2*g1*g2*t^7.2 + g1^3*g2*t^7.2 + g2^2*t^7.2 + (g2^2*t^7.2)/g1^2 + g1^2*g2^2*t^7.2 + (g2^3*t^7.2)/g1^3 + (g2^3*t^7.2)/g1 + g1*g2^3*t^7.2 + g1^3*g2^3*t^7.2 + 2*t^8.4 + t^8.4/g1^4 + (2*t^8.4)/g1^2 + 2*g1^2*t^8.4 + g1^4*t^8.4 + (2*t^8.4)/g2^2 + t^8.4/(g1^4*g2^2) + (2*t^8.4)/(g1^2*g2^2) + (2*g1^2*t^8.4)/g2^2 + (g1^4*t^8.4)/g2^2 - (3*t^8.4)/(g1*g2) - (3*g1*t^8.4)/g2 - (3*g2*t^8.4)/g1 - 3*g1*g2*t^8.4 + 2*g2^2*t^8.4 + (g2^2*t^8.4)/g1^4 + (2*g2^2*t^8.4)/g1^2 + 2*g1^2*g2^2*t^8.4 + g1^4*g2^2*t^8.4 - t^4.2/y - t^6.6/(g1*g2*y) - (g1*t^6.6)/(g2*y) - (g2*t^6.6)/(g1*y) - (g1*g2*t^6.6)/y + (2*t^7.8)/y + t^7.8/(g1^2*y) + (g1^2*t^7.8)/y + t^7.8/(g2^2*y) + (2*t^7.8)/(g1*g2*y) + (2*g1*t^7.8)/(g2*y) + (2*g2*t^7.8)/(g1*y) + (2*g1*g2*t^7.8)/y + (g2^2*t^7.8)/y - t^4.2*y - (t^6.6*y)/(g1*g2) - (g1*t^6.6*y)/g2 - (g2*t^6.6*y)/g1 - g1*g2*t^6.6*y + 2*t^7.8*y + (t^7.8*y)/g1^2 + g1^2*t^7.8*y + (t^7.8*y)/g2^2 + (2*t^7.8*y)/(g1*g2) + (2*g1*t^7.8*y)/g2 + (2*g2*t^7.8*y)/g1 + 2*g1*g2*t^7.8*y + g2^2*t^7.8*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2853 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_5\phi_1^2$ + $ \phi_1q_1\tilde{q}_2$ + $ M_6\phi_1\tilde{q}_1^2$ 0.6641 0.8412 0.7894 [X:[], M:[0.8175, 0.7825, 0.7825, 0.8175, 1.2, 0.7651], q:[0.8, 0.3825], qb:[0.4175, 0.8], phi:[0.4]] t^2.3 + 2*t^2.35 + t^2.4 + 2*t^2.45 + t^3.5 + 2*t^3.6 + t^4.59 + 2*t^4.64 + 4*t^4.7 + 4*t^4.75 + 6*t^4.8 + 2*t^4.85 + 3*t^4.9 + t^5.79 + 2*t^5.84 + 2*t^5.9 + 4*t^5.95 - t^6. - t^4.2/y - t^4.2*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
372 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_5\phi_1^2$ 0.7103 0.8687 0.8177 [X:[], M:[0.9326, 0.9326, 0.9326, 0.9326, 1.0674], q:[0.6011, 0.4663], qb:[0.4663, 0.6011], phi:[0.4663]] 5*t^2.8 + t^3.2 + t^3.61 + 3*t^4.2 + 4*t^4.6 + 3*t^5.01 + 11*t^5.6 - 3*t^6. - t^4.4/y - t^4.4*y detail