Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1741 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }\phi_{1}^{4}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ 0.6583 0.8368 0.7867 [M:[0.8221, 1.1779, 0.8221, 0.8221], q:[0.75, 0.4279], qb:[0.4279, 0.3942], phi:[0.5]] [M:[[1, 1], [-1, -1], [1, 1], [-1, 0]], q:[[0, 0], [-1, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{4}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$ ${}$ -4 4*t^2.466 + t^2.567 + t^3. + t^3.433 + t^3.865 + 2*t^3.966 + 3*t^4.067 + 10*t^4.933 + 4*t^5.034 + t^5.135 + 4*t^5.466 + t^5.567 + 2*t^5.899 - 4*t^6. - 2*t^6.101 + 4*t^6.331 + 8*t^6.433 + 10*t^6.534 + 3*t^6.635 + t^6.865 - 2*t^6.966 - t^7.067 + t^7.298 + 18*t^7.399 + 5*t^7.5 + t^7.702 + t^7.73 + 2*t^7.831 + 12*t^7.933 + 6*t^8.034 + 6*t^8.135 + 2*t^8.365 - 18*t^8.466 - 12*t^8.567 - 2*t^8.669 + 10*t^8.798 + 18*t^8.899 - t^4.5/y - (2*t^6.966)/y + (6*t^7.933)/y + (6*t^8.034)/y + (4*t^8.466)/y + t^8.567/y + (4*t^8.899)/y - t^4.5*y - 2*t^6.966*y + 6*t^7.933*y + 6*t^8.034*y + 4*t^8.466*y + t^8.567*y + 4*t^8.899*y (2*t^2.466)/g1 + 2*g1*g2*t^2.466 + t^2.567/g2 + t^3. + g2*t^3.433 + g2^2*t^3.865 + t^3.966/g1 + g1*g2*t^3.966 + g1^2*t^4.067 + t^4.067/(g1^2*g2^2) + t^4.067/g2 + (3*t^4.933)/g1^2 + 4*g2*t^4.933 + 3*g1^2*g2^2*t^4.933 + 2*g1*t^5.034 + (2*t^5.034)/(g1*g2) + t^5.135/g2^2 + (2*t^5.466)/g1 + 2*g1*g2*t^5.466 + t^5.567/g2 + (g2*t^5.899)/g1 + g1*g2^2*t^5.899 - 2*t^6. - t^6./(g1^2*g2) - g1^2*g2*t^6. - t^6.101/(g1*g2^2) - (g1*t^6.101)/g2 + (2*g2^2*t^6.331)/g1 + 2*g1*g2^3*t^6.331 + (2*t^6.433)/g1^2 + 4*g2*t^6.433 + 2*g1^2*g2^2*t^6.433 + 3*g1*t^6.534 + (2*t^6.534)/(g1^3*g2^2) + (3*t^6.534)/(g1*g2) + 2*g1^3*g2*t^6.534 + t^6.635/(g1^2*g2^3) + t^6.635/g2^2 + (g1^2*t^6.635)/g2 + g2^2*t^6.865 - t^6.966/g1 - g1*g2*t^6.966 - t^7.067/g2 + g2^3*t^7.298 + (4*t^7.399)/g1^3 + (5*g2*t^7.399)/g1 + 5*g1*g2^2*t^7.399 + 4*g1^3*g2^3*t^7.399 + t^7.5 + (2*t^7.5)/(g1^2*g2) + 2*g1^2*g2*t^7.5 + t^7.702/g2^3 + g2^4*t^7.73 + (g2^2*t^7.831)/g1 + g1*g2^3*t^7.831 + (4*t^7.933)/g1^2 + 4*g2*t^7.933 + 4*g1^2*g2^2*t^7.933 + 2*g1*t^8.034 + t^8.034/(g1^3*g2^2) + (2*t^8.034)/(g1*g2) + g1^3*g2*t^8.034 + g1^4*t^8.135 + t^8.135/(g1^4*g2^4) + t^8.135/(g1^2*g2^3) + (2*t^8.135)/g2^2 + (g1^2*t^8.135)/g2 + (g2*t^8.365)/g1^2 + g1^2*g2^3*t^8.365 - (7*t^8.466)/g1 - (2*t^8.466)/(g1^3*g2) - 7*g1*g2*t^8.466 - 2*g1^3*g2^2*t^8.466 - 3*g1^2*t^8.567 - (3*t^8.567)/(g1^2*g2^2) - (6*t^8.567)/g2 - t^8.669/(g1*g2^3) - (g1*t^8.669)/g2^2 + (3*g2^2*t^8.798)/g1^2 + 4*g2^3*t^8.798 + 3*g1^2*g2^4*t^8.798 + (3*t^8.899)/g1^3 + (6*g2*t^8.899)/g1 + 6*g1*g2^2*t^8.899 + 3*g1^3*g2^3*t^8.899 - t^4.5/y - t^6.966/(g1*y) - (g1*g2*t^6.966)/y + t^7.933/(g1^2*y) + (4*g2*t^7.933)/y + (g1^2*g2^2*t^7.933)/y + (3*g1*t^8.034)/y + (3*t^8.034)/(g1*g2*y) + (2*t^8.466)/(g1*y) + (2*g1*g2*t^8.466)/y + t^8.567/(g2*y) + (2*g2*t^8.899)/(g1*y) + (2*g1*g2^2*t^8.899)/y - t^4.5*y - (t^6.966*y)/g1 - g1*g2*t^6.966*y + (t^7.933*y)/g1^2 + 4*g2*t^7.933*y + g1^2*g2^2*t^7.933*y + 3*g1*t^8.034*y + (3*t^8.034*y)/(g1*g2) + (2*t^8.466*y)/g1 + 2*g1*g2*t^8.466*y + (t^8.567*y)/g2 + (2*g2*t^8.899*y)/g1 + 2*g1*g2^2*t^8.899*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
225 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }\phi_{1}^{4}$ 0.644 0.812 0.7931 [M:[0.8115, 1.1885, 0.8115], q:[0.75, 0.4385], qb:[0.4058, 0.4058], phi:[0.5]] 2*t^2.435 + 2*t^2.533 + t^3. + 2*t^3.467 + 3*t^3.935 + 2*t^4.033 + t^4.131 + 3*t^4.869 + 4*t^4.967 + 3*t^5.065 + 2*t^5.435 + 2*t^5.533 + 2*t^5.902 - t^6. - t^4.5/y - t^4.5*y detail