Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1738 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ 0.688 0.8542 0.8054 [M:[0.6814, 1.1062, 0.7876], q:[0.7766, 0.5421], qb:[0.4579, 0.4359], phi:[0.4469]] [M:[[-12], [4], [-8]], q:[[1], [11]], qb:[[-11], [7]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{3}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{4}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ ${}M_{1}\phi_{1}\tilde{q}_{2}^{2}$ 0 t^2.044 + t^2.363 + t^2.681 + t^2.934 + t^3. + t^3.319 + t^3.703 + t^3.956 + t^4.022 + 2*t^4.088 + t^4.275 + t^4.341 + t^4.407 + t^4.593 + 2*t^4.725 + t^4.978 + 2*t^5.044 + t^5.297 + 3*t^5.363 + t^5.615 + t^5.681 + t^5.868 + t^6.066 + 2*t^6.132 + t^6.319 + 2*t^6.385 + 2*t^6.451 + 3*t^6.637 + 2*t^6.703 + 3*t^6.769 + t^6.89 + 2*t^6.956 + 2*t^7.022 + 3*t^7.088 + t^7.208 + t^7.275 + 4*t^7.407 + t^7.527 + t^7.659 + 3*t^7.725 + t^7.792 + t^7.912 + t^7.978 + 3*t^8.044 + t^8.11 + 3*t^8.176 + t^8.231 + t^8.297 + 2*t^8.429 + 2*t^8.495 + 2*t^8.549 - t^8.615 + t^8.681 + 2*t^8.747 + t^8.802 + 4*t^8.814 + t^8.868 - t^8.934 - t^4.341/y - t^6.385/y - t^6.703/y + t^7.407/y + t^7.725/y + (2*t^7.978)/y + (2*t^8.044)/y + (2*t^8.297)/y + (2*t^8.363)/y - t^8.429/y + t^8.615/y + (2*t^8.681)/y + t^8.934/y - t^4.341*y - t^6.385*y - t^6.703*y + t^7.407*y + t^7.725*y + 2*t^7.978*y + 2*t^8.044*y + 2*t^8.297*y + 2*t^8.363*y - t^8.429*y + t^8.615*y + 2*t^8.681*y + t^8.934*y t^2.044/g1^12 + t^2.363/g1^8 + t^2.681/g1^4 + g1^18*t^2.934 + t^3. + g1^4*t^3.319 + t^3.703/g1^10 + g1^12*t^3.956 + t^4.022/g1^6 + (2*t^4.088)/g1^24 + g1^16*t^4.275 + t^4.341/g1^2 + t^4.407/g1^20 + g1^20*t^4.593 + (2*t^4.725)/g1^16 + g1^6*t^4.978 + (2*t^5.044)/g1^12 + g1^10*t^5.297 + (3*t^5.363)/g1^8 + g1^14*t^5.615 + t^5.681/g1^4 + g1^36*t^5.868 + t^6.066/g1^18 + (2*t^6.132)/g1^36 + g1^4*t^6.319 + (2*t^6.385)/g1^14 + (2*t^6.451)/g1^32 + 3*g1^8*t^6.637 + (2*t^6.703)/g1^10 + (3*t^6.769)/g1^28 + g1^30*t^6.89 + 2*g1^12*t^6.956 + (2*t^7.022)/g1^6 + (3*t^7.088)/g1^24 + g1^34*t^7.208 + g1^16*t^7.275 + (4*t^7.407)/g1^20 + g1^38*t^7.527 + g1^2*t^7.659 + (3*t^7.725)/g1^16 + t^7.792/g1^34 + g1^24*t^7.912 + g1^6*t^7.978 + (3*t^8.044)/g1^12 + t^8.11/g1^30 + (3*t^8.176)/g1^48 + g1^28*t^8.231 + g1^10*t^8.297 + (2*t^8.429)/g1^26 + (2*t^8.495)/g1^44 + 2*g1^32*t^8.549 - g1^14*t^8.615 + t^8.681/g1^4 + (2*t^8.747)/g1^22 + g1^54*t^8.802 + (4*t^8.814)/g1^40 + g1^36*t^8.868 - g1^18*t^8.934 - t^4.341/(g1^2*y) - t^6.385/(g1^14*y) - t^6.703/(g1^10*y) + t^7.407/(g1^20*y) + t^7.725/(g1^16*y) + (2*g1^6*t^7.978)/y + (2*t^8.044)/(g1^12*y) + (2*g1^10*t^8.297)/y + (2*t^8.363)/(g1^8*y) - t^8.429/(g1^26*y) + (g1^14*t^8.615)/y + (2*t^8.681)/(g1^4*y) + (g1^18*t^8.934)/y - (t^4.341*y)/g1^2 - (t^6.385*y)/g1^14 - (t^6.703*y)/g1^10 + (t^7.407*y)/g1^20 + (t^7.725*y)/g1^16 + 2*g1^6*t^7.978*y + (2*t^8.044*y)/g1^12 + 2*g1^10*t^8.297*y + (2*t^8.363*y)/g1^8 - (t^8.429*y)/g1^26 + g1^14*t^8.615*y + (2*t^8.681*y)/g1^4 + g1^18*t^8.934*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
220 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ 0.6709 0.8239 0.8143 [M:[0.6905, 1.1032], q:[0.7758, 0.5338], qb:[0.4662, 0.4306], phi:[0.4484]] t^2.071 + t^2.69 + t^2.893 + t^3. + t^3.31 + t^3.619 + t^3.726 + t^3.929 + t^4.036 + 2*t^4.143 + t^4.238 + t^4.345 + t^4.548 + t^4.762 + t^4.964 + t^5.071 + 2*t^5.381 + t^5.583 + t^5.69 + t^5.786 - t^4.345/y - t^4.345*y detail