Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1731 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ 0.6056 0.7771 0.7792 [M:[0.9925, 1.0225, 1.0075, 0.7511], q:[0.7481, 0.2594], qb:[0.5008, 0.4768], phi:[0.5037]] [M:[[4, 4], [-12, -12], [-4, -4], [-13, -1]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{2}$, ${ }M_{4}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{4}$, ${ }M_{4}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ ${}\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ -2 t^2.208 + t^2.253 + t^2.28 + 2*t^3.022 + 2*t^3.067 + t^3.675 + t^3.72 + t^3.792 + t^4.372 + t^4.417 + t^4.444 + t^4.462 + t^4.489 + t^4.507 + t^4.516 + t^4.534 + t^4.561 + 2*t^5.231 + 3*t^5.276 + 2*t^5.303 + 2*t^5.321 + t^5.348 + t^5.883 + t^5.928 + t^5.973 - 2*t^6. + 2*t^6.045 + 4*t^6.09 + 3*t^6.135 + t^6.58 + 2*t^6.625 + t^6.67 + 2*t^6.697 + t^6.715 + 3*t^6.742 + t^6.76 + 2*t^6.787 + t^6.796 + t^6.814 + t^6.841 + t^6.859 + 2*t^7.394 - t^7.421 + 3*t^7.439 + 3*t^7.484 - t^7.493 + t^7.511 + 3*t^7.529 + t^7.538 + 2*t^7.556 + 2*t^7.574 + 3*t^7.583 + t^7.601 + t^7.628 + t^8.046 + 2*t^8.091 + t^8.136 - t^8.163 + t^8.181 - 3*t^8.208 + t^8.226 - t^8.236 - t^8.253 - 3*t^8.28 + 4*t^8.298 + t^8.308 + t^8.325 + 5*t^8.343 + 2*t^8.37 + 3*t^8.388 + t^8.415 + t^8.743 + t^8.788 + t^8.816 + 2*t^8.833 + 2*t^8.878 + t^8.888 + t^8.905 + t^8.923 - t^8.933 + 2*t^8.95 + t^8.96 + t^8.968 - 2*t^8.978 + 3*t^8.995 - t^4.511/y - t^6.764/y + t^7.444/y + t^7.462/y + (2*t^7.489)/y - t^7.579/y + (2*t^8.231)/y + t^8.258/y + (4*t^8.276)/y + (2*t^8.303)/y + (2*t^8.321)/y + (2*t^8.348)/y + t^8.883/y + (2*t^8.928)/y + t^8.955/y + t^8.973/y - t^4.511*y - t^6.764*y + t^7.444*y + t^7.462*y + 2*t^7.489*y - t^7.579*y + 2*t^8.231*y + t^8.258*y + 4*t^8.276*y + 2*t^8.303*y + 2*t^8.321*y + 2*t^8.348*y + t^8.883*y + 2*t^8.928*y + t^8.955*y + t^8.973*y (g2^7*t^2.208)/g1^5 + t^2.253/(g1^13*g2) + (g1^7*t^2.28)/g2^5 + (2*t^3.022)/(g1^4*g2^4) + (2*t^3.067)/(g1^12*g2^12) + g1*g2^13*t^3.675 + (g2^5*t^3.72)/g1^7 + (g1^5*t^3.792)/g2^7 + (g2^22*t^4.372)/g1^2 + (g2^14*t^4.417)/g1^10 + g1^10*g2^10*t^4.444 + (g2^6*t^4.462)/g1^18 + g1^2*g2^2*t^4.489 + t^4.507/(g1^26*g2^2) + (g1^22*t^4.516)/g2^2 + t^4.534/(g1^6*g2^6) + (g1^14*t^4.561)/g2^10 + (2*g2^3*t^5.231)/g1^9 + (3*t^5.276)/(g1^17*g2^5) + (2*g1^3*t^5.303)/g2^9 + (2*t^5.321)/(g1^25*g2^13) + t^5.348/(g1^5*g2^17) + (g2^20*t^5.883)/g1^4 + (g2^12*t^5.928)/g1^12 + (g2^4*t^5.973)/g1^20 - 2*t^6. + (2*t^6.045)/(g1^8*g2^8) + (4*t^6.09)/(g1^16*g2^16) + (3*t^6.135)/(g1^24*g2^24) + (g2^29*t^6.58)/g1^7 + (2*g2^21*t^6.625)/g1^15 + (g2^13*t^6.67)/g1^23 + (2*g2^9*t^6.697)/g1^3 + (g2^5*t^6.715)/g1^31 + (3*g2*t^6.742)/g1^11 + t^6.76/(g1^39*g2^3) + (2*t^6.787)/(g1^19*g2^7) + (g1^29*t^6.796)/g2^7 + (g1*t^6.814)/g2^11 + (g1^21*t^6.841)/g2^15 + t^6.859/(g1^7*g2^19) + (2*g2^18*t^7.394)/g1^6 - g1^14*g2^14*t^7.421 + (3*g2^10*t^7.439)/g1^14 + (3*g2^2*t^7.484)/g1^22 - g1^26*g2^2*t^7.493 + t^7.511/(g1^2*g2^2) + (3*t^7.529)/(g1^30*g2^6) + (g1^18*t^7.538)/g2^6 + (2*t^7.556)/(g1^10*g2^10) + (2*t^7.574)/(g1^38*g2^14) + (3*g1^10*t^7.583)/g2^14 + t^7.601/(g1^18*g2^18) + (g1^2*t^7.628)/g2^22 + (g2^35*t^8.046)/g1 + (2*g2^27*t^8.091)/g1^9 + (g2^19*t^8.136)/g1^17 - g1^3*g2^15*t^8.163 + (g2^11*t^8.181)/g1^25 - (3*g2^7*t^8.208)/g1^5 + (g2^3*t^8.226)/g1^33 - g1^15*g2^3*t^8.236 - t^8.253/(g1^13*g2) - (3*g1^7*t^8.28)/g2^5 + (4*t^8.298)/(g1^21*g2^9) + (g1^27*t^8.308)/g2^9 + t^8.325/(g1*g2^13) + (5*t^8.343)/(g1^29*g2^17) + (2*t^8.37)/(g1^9*g2^21) + (3*t^8.388)/(g1^37*g2^25) + t^8.415/(g1^17*g2^29) + (g2^44*t^8.743)/g1^4 + (g2^36*t^8.788)/g1^12 + g1^8*g2^32*t^8.816 + (2*g2^28*t^8.833)/g1^20 + (2*g2^20*t^8.878)/g1^28 + g1^20*g2^20*t^8.888 + (g2^16*t^8.905)/g1^8 + (g2^12*t^8.923)/g1^36 - g1^12*g2^12*t^8.933 + (2*g2^8*t^8.95)/g1^16 + g1^32*g2^8*t^8.96 + (g2^4*t^8.968)/g1^44 - 2*g1^4*g2^4*t^8.978 + (3*t^8.995)/g1^24 - t^4.511/(g1^2*g2^2*y) - t^6.764/(g1^15*g2^3*y) + (g1^10*g2^10*t^7.444)/y + (g2^6*t^7.462)/(g1^18*y) + (2*g1^2*g2^2*t^7.489)/y - t^7.579/(g1^14*g2^14*y) + (2*g2^3*t^8.231)/(g1^9*y) + (g1^11*t^8.258)/(g2*y) + (4*t^8.276)/(g1^17*g2^5*y) + (2*g1^3*t^8.303)/(g2^9*y) + (2*t^8.321)/(g1^25*g2^13*y) + (2*t^8.348)/(g1^5*g2^17*y) + (g2^20*t^8.883)/(g1^4*y) + (2*g2^12*t^8.928)/(g1^12*y) + (g1^8*g2^8*t^8.955)/y + (g2^4*t^8.973)/(g1^20*y) - (t^4.511*y)/(g1^2*g2^2) - (t^6.764*y)/(g1^15*g2^3) + g1^10*g2^10*t^7.444*y + (g2^6*t^7.462*y)/g1^18 + 2*g1^2*g2^2*t^7.489*y - (t^7.579*y)/(g1^14*g2^14) + (2*g2^3*t^8.231*y)/g1^9 + (g1^11*t^8.258*y)/g2 + (4*t^8.276*y)/(g1^17*g2^5) + (2*g1^3*t^8.303*y)/g2^9 + (2*t^8.321*y)/(g1^25*g2^13) + (2*t^8.348*y)/(g1^5*g2^17) + (g2^20*t^8.883*y)/g1^4 + (2*g2^12*t^8.928*y)/g1^12 + g1^8*g2^8*t^8.955*y + (g2^4*t^8.973*y)/g1^20


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2730 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}q_{2}^{2}$ 0.5923 0.7564 0.783 [M:[0.9496, 1.1513, 1.0504, 0.8487], q:[0.7374, 0.313], qb:[0.4139, 0.4348], phi:[0.5252]] t^2.181 + t^2.243 + t^2.546 + 2*t^3.151 + 2*t^3.454 + t^3.516 + t^3.757 + t^3.819 + t^4.059 + t^4.122 + t^4.184 + t^4.362 + t^4.424 + t^4.487 + t^4.727 + t^4.789 + t^5.092 + 2*t^5.332 + 2*t^5.395 + t^5.635 + 3*t^5.697 + t^5.76 - t^4.576/y - t^4.576*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
215 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{3}$ 0.587 0.7429 0.7902 [M:[0.9864, 1.0409, 1.0136], q:[0.7466, 0.267], qb:[0.4795, 0.4795], phi:[0.5068]] 2*t^2.24 + 2*t^3.041 + 2*t^3.123 + 2*t^3.678 + 2*t^3.76 + 3*t^4.398 + 3*t^4.48 + 4*t^5.281 + 2*t^5.363 + 3*t^5.918 - 2*t^6. - t^4.52/y - t^4.52*y detail