Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
1717 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ | 0.7148 | 0.8821 | 0.8104 | [M:[0.6739, 0.9454, 1.0546, 0.6739], q:[0.7976, 0.5285], qb:[0.5285, 0.526], phi:[0.4048]] | [M:[[-8, -1, -1], [0, -7, -7], [0, 7, 7], [-1, -8, -1]], q:[[1, 1, 1], [7, 0, 0]], qb:[[0, 7, 0], [0, 0, 7]], phi:[[-2, -2, -2]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{4}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$ | ${}$ | -5 | 2*t^2.022 + t^2.429 + 2*t^3.164 + t^3.171 + t^3.971 + 3*t^4.043 + t^4.371 + 2*t^4.378 + 3*t^4.386 + 2*t^4.451 + t^4.858 + 4*t^5.185 + 2*t^5.193 + 2*t^5.593 + t^5.6 - 5*t^6. - 2*t^6.008 + 4*t^6.065 + 3*t^6.327 + 2*t^6.335 + t^6.343 + 2*t^6.392 + 4*t^6.4 + 4*t^6.407 + 3*t^6.472 + t^6.8 + 2*t^6.815 + 2*t^6.88 + 2*t^7.135 + 4*t^7.207 - t^7.214 - 2*t^7.222 + t^7.287 + 2*t^7.534 + 4*t^7.542 + 6*t^7.549 + 3*t^7.557 + 4*t^7.614 + 2*t^7.622 - 2*t^7.949 - 3*t^7.957 - t^8.014 - 8*t^8.022 - 3*t^8.029 + 5*t^8.086 + t^8.342 + 6*t^8.349 + 3*t^8.357 + 3*t^8.414 + 4*t^8.421 - 2*t^8.436 + 4*t^8.494 + t^8.741 + 2*t^8.749 + 5*t^8.756 + 4*t^8.764 + 6*t^8.771 + 2*t^8.821 + 3*t^8.829 + 4*t^8.836 + t^8.844 + 3*t^8.901 - t^4.214/y - (2*t^6.236)/y - t^6.643/y + t^7.043/y + (2*t^7.451)/y + t^7.786/y + (4*t^8.185)/y + (4*t^8.193)/y - (3*t^8.258)/y + (2*t^8.593)/y + t^8.6/y - (2*t^8.665)/y + (2*t^8.992)/y - t^4.214*y - 2*t^6.236*y - t^6.643*y + t^7.043*y + 2*t^7.451*y + t^7.786*y + 4*t^8.185*y + 4*t^8.193*y - 3*t^8.258*y + 2*t^8.593*y + t^8.6*y - 2*t^8.665*y + 2*t^8.992*y | t^2.022/(g1*g2^8*g3) + t^2.022/(g1^8*g2*g3) + t^2.429/(g1^4*g2^4*g3^4) + g1^7*g3^7*t^3.164 + g2^7*g3^7*t^3.164 + g1^7*g2^7*t^3.171 + g1*g2*g3^8*t^3.971 + t^4.043/(g1^2*g2^16*g3^2) + t^4.043/(g1^9*g2^9*g3^2) + t^4.043/(g1^16*g2^2*g3^2) + (g3^12*t^4.371)/(g1^2*g2^2) + (g1^5*g3^5*t^4.378)/g2^2 + (g2^5*g3^5*t^4.378)/g1^2 + (g1^12*t^4.386)/(g2^2*g3^2) + (g1^5*g2^5*t^4.386)/g3^2 + (g2^12*t^4.386)/(g1^2*g3^2) + t^4.451/(g1^5*g2^12*g3^5) + t^4.451/(g1^12*g2^5*g3^5) + t^4.858/(g1^8*g2^8*g3^8) + (g1^6*g3^6*t^5.185)/g2^8 + (2*g3^6*t^5.185)/(g1*g2) + (g2^6*g3^6*t^5.185)/g1^8 + (g1^6*t^5.193)/(g2*g3) + (g2^6*t^5.193)/(g1*g3) + (g1^3*g3^3*t^5.593)/g2^4 + (g2^3*g3^3*t^5.593)/g1^4 + (g1^3*g2^3*t^5.6)/g3^4 - 3*t^6. - (g1^7*t^6.)/g2^7 - (g2^7*t^6.)/g1^7 - (g1^7*t^6.008)/g3^7 - (g2^7*t^6.008)/g3^7 + t^6.065/(g1^3*g2^24*g3^3) + t^6.065/(g1^10*g2^17*g3^3) + t^6.065/(g1^17*g2^10*g3^3) + t^6.065/(g1^24*g2^3*g3^3) + g1^14*g3^14*t^6.327 + g1^7*g2^7*g3^14*t^6.327 + g2^14*g3^14*t^6.327 + g1^14*g2^7*g3^7*t^6.335 + g1^7*g2^14*g3^7*t^6.335 + g1^14*g2^14*t^6.343 + (g3^11*t^6.392)/(g1^3*g2^10) + (g3^11*t^6.392)/(g1^10*g2^3) + (g1^4*g3^4*t^6.4)/g2^10 + (2*g3^4*t^6.4)/(g1^3*g2^3) + (g2^4*g3^4*t^6.4)/g1^10 + (g1^11*t^6.407)/(g2^10*g3^3) + (g1^4*t^6.407)/(g2^3*g3^3) + (g2^4*t^6.407)/(g1^3*g3^3) + (g2^11*t^6.407)/(g1^10*g3^3) + t^6.472/(g1^6*g2^20*g3^6) + t^6.472/(g1^13*g2^13*g3^6) + t^6.472/(g1^20*g2^6*g3^6) + (g3^8*t^6.8)/(g1^6*g2^6) + (g1^8*t^6.815)/(g2^6*g3^6) + (g2^8*t^6.815)/(g1^6*g3^6) + t^6.88/(g1^9*g2^16*g3^9) + t^6.88/(g1^16*g2^9*g3^9) + g1^8*g2*g3^15*t^7.135 + g1*g2^8*g3^15*t^7.135 + (g1^5*g3^5*t^7.207)/g2^16 + (g3^5*t^7.207)/(g1^2*g2^9) + (g3^5*t^7.207)/(g1^9*g2^2) + (g2^5*g3^5*t^7.207)/g1^16 - t^7.214/(g1^2*g2^2*g3^2) - (g1^5*t^7.222)/(g2^2*g3^9) - (g2^5*t^7.222)/(g1^2*g3^9) + t^7.287/(g1^12*g2^12*g3^12) + (g1^5*g3^19*t^7.534)/g2^2 + (g2^5*g3^19*t^7.534)/g1^2 + (g1^12*g3^12*t^7.542)/g2^2 + 2*g1^5*g2^5*g3^12*t^7.542 + (g2^12*g3^12*t^7.542)/g1^2 + (g1^19*g3^5*t^7.549)/g2^2 + 2*g1^12*g2^5*g3^5*t^7.549 + 2*g1^5*g2^12*g3^5*t^7.549 + (g2^19*g3^5*t^7.549)/g1^2 + (g1^19*g2^5*t^7.557)/g3^2 + (g1^12*g2^12*t^7.557)/g3^2 + (g1^5*g2^19*t^7.557)/g3^2 + (g1^2*g3^2*t^7.614)/g2^12 + (2*g3^2*t^7.614)/(g1^5*g2^5) + (g2^2*g3^2*t^7.614)/g1^12 + (g1^2*t^7.622)/(g2^5*g3^5) + (g2^2*t^7.622)/(g1^5*g3^5) - g1^9*g2^2*g3^9*t^7.949 - g1^2*g2^9*g3^9*t^7.949 - g1^16*g2^2*g3^2*t^7.957 - g1^9*g2^9*g3^2*t^7.957 - g1^2*g2^16*g3^2*t^7.957 - (g3^6*t^8.014)/(g1^8*g2^8) - (g1^6*t^8.022)/(g2^15*g3) - (3*t^8.022)/(g1*g2^8*g3) - (3*t^8.022)/(g1^8*g2*g3) - (g2^6*t^8.022)/(g1^15*g3) - (g1^6*t^8.029)/(g2^8*g3^8) - t^8.029/(g1*g2*g3^8) - (g2^6*t^8.029)/(g1^8*g3^8) + t^8.086/(g1^4*g2^32*g3^4) + t^8.086/(g1^11*g2^25*g3^4) + t^8.086/(g1^18*g2^18*g3^4) + t^8.086/(g1^25*g2^11*g3^4) + t^8.086/(g1^32*g2^4*g3^4) + (g3^20*t^8.342)/(g1*g2) + (g1^13*g3^13*t^8.349)/g2^8 + (2*g1^6*g3^13*t^8.349)/g2 + (2*g2^6*g3^13*t^8.349)/g1 + (g2^13*g3^13*t^8.349)/g1^8 + (g1^13*g3^6*t^8.357)/g2 + g1^6*g2^6*g3^6*t^8.357 + (g2^13*g3^6*t^8.357)/g1 + (g3^10*t^8.414)/(g1^4*g2^18) + (g3^10*t^8.414)/(g1^11*g2^11) + (g3^10*t^8.414)/(g1^18*g2^4) + (g1^3*g3^3*t^8.421)/g2^18 + (g3^3*t^8.421)/(g1^4*g2^11) + (g3^3*t^8.421)/(g1^11*g2^4) + (g2^3*g3^3*t^8.421)/g1^18 + (g1^10*t^8.429)/(g2^18*g3^4) - (2*t^8.429)/(g1^4*g2^4*g3^4) + (g2^10*t^8.429)/(g1^18*g3^4) - (g1^3*t^8.436)/(g2^4*g3^11) - (g2^3*t^8.436)/(g1^4*g3^11) + t^8.494/(g1^7*g2^28*g3^7) + t^8.494/(g1^14*g2^21*g3^7) + t^8.494/(g1^21*g2^14*g3^7) + t^8.494/(g1^28*g2^7*g3^7) + (g3^24*t^8.741)/(g1^4*g2^4) + (g1^3*g3^17*t^8.749)/g2^4 + (g2^3*g3^17*t^8.749)/g1^4 + (2*g1^10*g3^10*t^8.756)/g2^4 + g1^3*g2^3*g3^10*t^8.756 + (2*g2^10*g3^10*t^8.756)/g1^4 + (g1^17*g3^3*t^8.764)/g2^4 + g1^10*g2^3*g3^3*t^8.764 + g1^3*g2^10*g3^3*t^8.764 + (g2^17*g3^3*t^8.764)/g1^4 + (g1^24*t^8.771)/(g2^4*g3^4) + (g1^17*g2^3*t^8.771)/g3^4 + (2*g1^10*g2^10*t^8.771)/g3^4 + (g1^3*g2^17*t^8.771)/g3^4 + (g2^24*t^8.771)/(g1^4*g3^4) + (g3^7*t^8.821)/(g1^7*g2^14) + (g3^7*t^8.821)/(g1^14*g2^7) + t^8.829/g1^14 + t^8.829/g2^14 + t^8.829/(g1^7*g2^7) + t^8.836/(g1^7*g3^7) + (g1^7*t^8.836)/(g2^14*g3^7) + t^8.836/(g2^7*g3^7) + (g2^7*t^8.836)/(g1^14*g3^7) + t^8.844/g3^14 + t^8.901/(g1^10*g2^24*g3^10) + t^8.901/(g1^17*g2^17*g3^10) + t^8.901/(g1^24*g2^10*g3^10) - t^4.214/(g1^2*g2^2*g3^2*y) - t^6.236/(g1^3*g2^10*g3^3*y) - t^6.236/(g1^10*g2^3*g3^3*y) - t^6.643/(g1^6*g2^6*g3^6*y) + t^7.043/(g1^9*g2^9*g3^2*y) + t^7.451/(g1^5*g2^12*g3^5*y) + t^7.451/(g1^12*g2^5*g3^5*y) + (g1^2*g2^2*g3^2*t^7.786)/y + (g1^6*g3^6*t^8.185)/(g2^8*y) + (2*g3^6*t^8.185)/(g1*g2*y) + (g2^6*g3^6*t^8.185)/(g1^8*y) + (2*g1^6*t^8.193)/(g2*g3*y) + (2*g2^6*t^8.193)/(g1*g3*y) - t^8.258/(g1^4*g2^18*g3^4*y) - t^8.258/(g1^11*g2^11*g3^4*y) - t^8.258/(g1^18*g2^4*g3^4*y) + (g1^3*g3^3*t^8.593)/(g2^4*y) + (g2^3*g3^3*t^8.593)/(g1^4*y) + (g1^3*g2^3*t^8.6)/(g3^4*y) - t^8.665/(g1^7*g2^14*g3^7*y) - t^8.665/(g1^14*g2^7*g3^7*y) + (g3^7*t^8.992)/(g1^7*y) + (g3^7*t^8.992)/(g2^7*y) - (t^4.214*y)/(g1^2*g2^2*g3^2) - (t^6.236*y)/(g1^3*g2^10*g3^3) - (t^6.236*y)/(g1^10*g2^3*g3^3) - (t^6.643*y)/(g1^6*g2^6*g3^6) + (t^7.043*y)/(g1^9*g2^9*g3^2) + (t^7.451*y)/(g1^5*g2^12*g3^5) + (t^7.451*y)/(g1^12*g2^5*g3^5) + g1^2*g2^2*g3^2*t^7.786*y + (g1^6*g3^6*t^8.185*y)/g2^8 + (2*g3^6*t^8.185*y)/(g1*g2) + (g2^6*g3^6*t^8.185*y)/g1^8 + (2*g1^6*t^8.193*y)/(g2*g3) + (2*g2^6*t^8.193*y)/(g1*g3) - (t^8.258*y)/(g1^4*g2^18*g3^4) - (t^8.258*y)/(g1^11*g2^11*g3^4) - (t^8.258*y)/(g1^18*g2^4*g3^4) + (g1^3*g3^3*t^8.593*y)/g2^4 + (g2^3*g3^3*t^8.593*y)/g1^4 + (g1^3*g2^3*t^8.6*y)/g3^4 - (t^8.665*y)/(g1^7*g2^14*g3^7) - (t^8.665*y)/(g1^14*g2^7*g3^7) + (g3^7*t^8.992*y)/g1^7 + (g3^7*t^8.992*y)/g2^7 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
134 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}M_{3}$ | 0.694 | 0.8411 | 0.8251 | [M:[0.6741, 0.9479, 1.0521], q:[0.7973, 0.5287], qb:[0.5261, 0.5261], phi:[0.4055]] | t^2.022 + t^2.433 + t^3.156 + 2*t^3.164 + 2*t^3.97 + t^4.045 + 3*t^4.373 + 2*t^4.381 + t^4.388 + t^4.455 + t^4.866 + t^5.179 + 2*t^5.186 + t^5.589 + 2*t^5.597 - 5*t^6. - t^4.216/y - t^4.216*y | detail |