Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1711 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_1^2$ + $ \phi_1\tilde{q}_1^3\tilde{q}_2$ + $ \phi_1\tilde{q}_2^2$ + $ \phi_1^2X_1$ 0.4324 0.4949 0.8737 [X:[1.4286], M:[1.0], q:[0.7143, 1.0], qb:[0.2857, 0.8571], phi:[0.2857]] [X:[[0]], M:[[0]], q:[[0], [0]], qb:[[0], [0]], phi:[[0]]] 0 {a: 339/784, c: 97/196, X1: 10/7, M1: 1, q1: 5/7, q2: 1, qb1: 2/7, qb2: 6/7, phi1: 2/7}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$\phi_1\tilde{q}_1^2$, $ M_1$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ X_1$, $ q_1q_2$ . 0 t^2.57+t^3.+t^3.43+t^3.86+t^4.29+t^5.14+t^6.86+2*t^7.71-t^3.86/y+t^8.57/y-t^3.86*y+t^8.57*y t^2.57+t^3.+t^3.43+t^3.86+t^4.29+t^5.14+t^6.86+2*t^7.71-t^3.86/y+t^8.57/y-t^3.86*y+t^8.57*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2708 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_1^2$ + $ \phi_1\tilde{q}_1^3\tilde{q}_2$ + $ \phi_1\tilde{q}_2^2$ + $ \phi_1^2X_1$ + $ M_2q_2\tilde{q}_1$ 0.4526 0.533 0.8492 [X:[1.4286], M:[1.0, 0.7143], q:[0.7143, 1.0], qb:[0.2857, 0.8571], phi:[0.2857]] t^2.14+t^2.57+t^3.+t^3.43+2*t^4.29+t^4.71+2*t^5.14+t^5.57-t^3.86/y-t^6./y-t^3.86*y-t^6.*y detail {a: 621/1372, c: 2925/5488, X1: 10/7, M1: 1, M2: 5/7, q1: 5/7, q2: 1, qb1: 2/7, qb2: 6/7, phi1: 2/7}
2707 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_1^2$ + $ \phi_1\tilde{q}_1^3\tilde{q}_2$ + $ \phi_1\tilde{q}_2^2$ + $ \phi_1^2X_1$ + $ M_2\tilde{q}_1\tilde{q}_2$ 0.445 0.5164 0.8617 [X:[1.4286], M:[1.0, 0.8571], q:[0.7143, 1.0], qb:[0.2857, 0.8571], phi:[0.2857]] 2*t^2.57+t^3.+t^3.86+t^4.29+3*t^5.14+t^5.57-t^6.-t^3.86/y-t^3.86*y detail {a: 1221/2744, c: 1417/2744, X1: 10/7, M1: 1, M2: 6/7, q1: 5/7, q2: 1, qb1: 2/7, qb2: 6/7, phi1: 2/7}


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
111 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1q_1\tilde{q}_1$ + $ M_1^2$ + $ \phi_1\tilde{q}_1^3\tilde{q}_2$ 0.5768 0.6957 0.829 [X:[], M:[1.0], q:[0.6194, 1.0], qb:[0.3806, 0.4775], phi:[0.3806]] t^2.28+t^2.57+t^3.+t^3.29+t^3.43+t^3.72+t^4.01+t^4.14+t^4.43+t^4.57+2*t^4.86+t^5.15+t^5.57+t^5.87-t^4.14/y-t^4.14*y detail