Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1703 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }\phi_{1}q_{2}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ 0.6281 0.7586 0.8281 [M:[1.2889, 0.7009, 0.7009], q:[0.8222, 0.8222], qb:[0.4769, 0.4566], phi:[0.3555]] [M:[[4, 4], [-7, -1], [-7, -1]], q:[[1, 1], [1, 1]], qb:[[6, 0], [0, 6]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{3}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}M_{3}$, ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ ${}$ -3 2*t^2.103 + t^2.8 + t^3.806 + 2*t^3.836 + 2*t^3.867 + t^3.928 + 3*t^4.205 + 2*t^4.903 + t^4.933 + t^5.6 + 2*t^5.909 + 3*t^5.939 + 2*t^5.97 - 3*t^6. - t^6.061 + 4*t^6.308 + t^6.606 + 2*t^6.637 + 2*t^6.667 + t^6.728 + 2*t^7.006 - 2*t^7.067 - 2*t^7.097 - t^7.127 + t^7.612 + 2*t^7.642 + 4*t^7.673 + 4*t^7.703 + 2*t^7.734 + t^7.795 + t^7.855 + 3*t^8.011 + 4*t^8.042 + 2*t^8.072 - 6*t^8.103 - 2*t^8.164 + t^8.401 + 5*t^8.411 + 2*t^8.709 + 3*t^8.739 + 2*t^8.77 - 3*t^8.8 - 2*t^8.831 - t^8.861 - t^4.067/y - (2*t^6.169)/y + t^7.205/y + (2*t^7.903)/y + (2*t^7.964)/y - (3*t^8.272)/y + (2*t^8.909)/y + (4*t^8.939)/y + (4*t^8.97)/y - t^4.067*y - 2*t^6.169*y + t^7.205*y + 2*t^7.903*y + 2*t^7.964*y - 3*t^8.272*y + 2*t^8.909*y + 4*t^8.939*y + 4*t^8.97*y (2*t^2.103)/(g1^7*g2) + g1^6*g2^6*t^2.8 + (g2^10*t^3.806)/g1^2 + 2*g1*g2^7*t^3.836 + 2*g1^4*g2^4*t^3.867 + (g1^10*t^3.928)/g2^2 + (3*t^4.205)/(g1^14*g2^2) + (2*g2^5*t^4.903)/g1 + g1^2*g2^2*t^4.933 + g1^12*g2^12*t^5.6 + (2*g2^9*t^5.909)/g1^9 + (3*g2^6*t^5.939)/g1^6 + (2*g2^3*t^5.97)/g1^3 - 3*t^6. - (g1^6*t^6.061)/g2^6 + (4*t^6.308)/(g1^21*g2^3) + g1^4*g2^16*t^6.606 + 2*g1^7*g2^13*t^6.637 + 2*g1^10*g2^10*t^6.667 + g1^16*g2^4*t^6.728 + (2*g2^4*t^7.006)/g1^8 - (2*t^7.067)/(g1^2*g2^2) - (2*g1*t^7.097)/g2^5 - (g1^4*t^7.127)/g2^8 + (g2^20*t^7.612)/g1^4 + (2*g2^17*t^7.642)/g1 + 4*g1^2*g2^14*t^7.673 + 4*g1^5*g2^11*t^7.703 + 2*g1^8*g2^8*t^7.734 + g1^14*g2^2*t^7.795 + (g1^20*t^7.855)/g2^4 + (3*g2^8*t^8.011)/g1^16 + (4*g2^5*t^8.042)/g1^13 + (2*g2^2*t^8.072)/g1^10 - (6*t^8.103)/(g1^7*g2) - (2*t^8.164)/(g1*g2^7) + g1^18*g2^18*t^8.401 + (5*t^8.411)/(g1^28*g2^4) + (2*g2^15*t^8.709)/g1^3 + 3*g2^12*t^8.739 + 2*g1^3*g2^9*t^8.77 - 3*g1^6*g2^6*t^8.8 - 2*g1^9*g2^3*t^8.831 - g1^12*t^8.861 - t^4.067/(g1^2*g2^2*y) - (2*t^6.169)/(g1^9*g2^3*y) + t^7.205/(g1^14*g2^2*y) + (2*g2^5*t^7.903)/(g1*y) + (2*g1^5*t^7.964)/(g2*y) - (3*t^8.272)/(g1^16*g2^4*y) + (2*g2^9*t^8.909)/(g1^9*y) + (4*g2^6*t^8.939)/(g1^6*y) + (4*g2^3*t^8.97)/(g1^3*y) - (t^4.067*y)/(g1^2*g2^2) - (2*t^6.169*y)/(g1^9*g2^3) + (t^7.205*y)/(g1^14*g2^2) + (2*g2^5*t^7.903*y)/g1 + (2*g1^5*t^7.964*y)/g2 - (3*t^8.272*y)/(g1^16*g2^4) + (2*g2^9*t^8.909*y)/g1^9 + (4*g2^6*t^8.939*y)/g1^6 + (4*g2^3*t^8.97*y)/g1^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
86 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }\phi_{1}q_{2}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ 0.6077 0.7201 0.8439 [M:[1.2833, 0.7104], q:[0.8208, 0.8208], qb:[0.4688, 0.4562], phi:[0.3583]] t^2.131 + t^2.775 + t^3.812 + 2*t^3.831 + 2*t^3.85 + t^3.869 + t^3.888 + t^4.262 + t^4.906 + t^4.925 + t^5.55 + t^5.943 + t^5.962 - 2*t^6. - t^4.075/y - t^4.075*y detail