Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
1574 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{2}M_{6}$ + ${ }M_{7}\phi_{1}^{2}$ | 0.6945 | 0.8529 | 0.8142 | [M:[0.9408, 1.0485, 1.0053, 0.984, 1.016, 0.9515, 1.0053], q:[0.5349, 0.5243], qb:[0.4597, 0.4917], phi:[0.4973]] | [M:[[16, 8], [-12, -12], [-2, 2], [6, -6], [-6, 6], [12, 12], [-2, 2]], q:[[-10, -2], [-6, -6]], qb:[[12, 0], [0, 12]], phi:[[1, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }M_{6}$, ${ }M_{4}$, ${ }M_{3}$, ${ }M_{7}$, ${ }M_{5}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}M_{7}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{6}$, ${ }M_{6}M_{7}$, ${ }M_{5}M_{6}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}M_{7}$ | ${}$ | -3 | t^2.822 + t^2.854 + t^2.952 + 2*t^3.016 + t^3.048 + t^3.08 + t^4.25 + t^4.346 + t^4.442 + t^4.444 + t^4.476 + t^4.54 + t^4.572 + t^4.638 + t^4.67 + t^4.702 + t^5.645 + t^5.677 + t^5.709 + 2*t^5.838 + 2*t^5.87 + t^5.902 + t^5.934 + t^5.968 - 3*t^6. + 2*t^6.032 + 2*t^6.064 + 2*t^6.096 - t^6.098 + t^6.128 - t^6.13 + t^6.16 - t^6.194 - t^6.226 + t^7.073 + t^7.105 + t^7.169 + t^7.201 + t^7.202 + t^7.265 + t^7.266 + t^7.297 + 2*t^7.298 + t^7.33 + t^7.362 + 2*t^7.394 + t^7.426 + t^7.458 + t^7.46 + t^7.49 + t^7.492 + t^7.522 + t^7.524 + 2*t^7.556 + t^7.588 + t^7.62 - t^7.622 + t^7.652 + t^7.654 + t^7.686 + t^7.718 + t^7.75 + t^7.782 + t^8.467 + t^8.499 + t^8.501 + t^8.531 + t^8.563 + t^8.597 - t^8.629 + 2*t^8.661 + 3*t^8.693 + t^8.694 + 2*t^8.725 + t^8.757 - t^8.758 + 2*t^8.789 + t^8.79 - 3*t^8.822 - 2*t^8.854 + t^8.885 + 3*t^8.886 + t^8.888 + 2*t^8.918 + t^8.95 - 3*t^8.952 + 2*t^8.982 - t^4.492/y - t^7.314/y + t^7.476/y - t^7.508/y + t^7.67/y + t^8.677/y + t^8.774/y + t^8.806/y + (2*t^8.838)/y + (3*t^8.87)/y + (2*t^8.902)/y + t^8.934/y + (2*t^8.968)/y - t^4.492*y - t^7.314*y + t^7.476*y - t^7.508*y + t^7.67*y + t^8.677*y + t^8.774*y + t^8.806*y + 2*t^8.838*y + 3*t^8.87*y + 2*t^8.902*y + t^8.934*y + 2*t^8.968*y | g1^16*g2^8*t^2.822 + g1^12*g2^12*t^2.854 + (g1^6*t^2.952)/g2^6 + (2*g2^2*t^3.016)/g1^2 + (g2^6*t^3.048)/g1^6 + (g2^10*t^3.08)/g1^10 + (g1^25*t^4.25)/g2 + g1^13*g2^11*t^4.346 + g1*g2^23*t^4.442 + (g1^7*t^4.444)/g2^7 + (g1^3*t^4.476)/g2^3 + (g2^5*t^4.54)/g1^5 + (g2^9*t^4.572)/g1^9 + t^4.638/(g1^11*g2^13) + t^4.67/(g1^15*g2^9) + t^4.702/(g1^19*g2^5) + g1^32*g2^16*t^5.645 + g1^28*g2^20*t^5.677 + g1^24*g2^24*t^5.709 + 2*g1^14*g2^10*t^5.838 + 2*g1^10*g2^14*t^5.87 + g1^6*g2^18*t^5.902 + g1^2*g2^22*t^5.934 + (g1^4*t^5.968)/g2^4 - 3*t^6. + (2*g2^4*t^6.032)/g1^4 + (2*g2^8*t^6.064)/g1^8 + (2*g2^12*t^6.096)/g1^12 - t^6.098/(g1^6*g2^18) + (g2^16*t^6.128)/g1^16 - t^6.13/(g1^10*g2^14) + (g2^20*t^6.16)/g1^20 - t^6.194/(g1^18*g2^6) - t^6.226/(g1^22*g2^2) + g1^41*g2^7*t^7.073 + g1^37*g2^11*t^7.105 + g1^29*g2^19*t^7.169 + g1^25*g2^23*t^7.201 + (g1^31*t^7.202)/g2^7 + g1^17*g2^31*t^7.265 + g1^23*g2*t^7.266 + g1^13*g2^35*t^7.297 + 2*g1^19*g2^5*t^7.298 + g1^15*g2^9*t^7.33 + g1^11*g2^13*t^7.362 + 2*g1^7*g2^17*t^7.394 + g1^3*g2^21*t^7.426 + (g2^25*t^7.458)/g1 + (g1^5*t^7.46)/g2^5 + (g2^29*t^7.49)/g1^5 + (g1*t^7.492)/g2 + (g2^33*t^7.522)/g1^9 + (g2^3*t^7.524)/g1^3 + (2*g2^7*t^7.556)/g1^7 + (g2^11*t^7.588)/g1^11 + (g2^15*t^7.62)/g1^15 - t^7.622/(g1^9*g2^15) + (g2^19*t^7.652)/g1^19 + t^7.654/(g1^13*g2^11) + t^7.686/(g1^17*g2^7) + t^7.718/(g1^21*g2^3) + (g2*t^7.75)/g1^25 + (g2^5*t^7.782)/g1^29 + g1^48*g2^24*t^8.467 + g1^44*g2^28*t^8.499 + (g1^50*t^8.501)/g2^2 + g1^40*g2^32*t^8.531 + g1^36*g2^36*t^8.563 + g1^38*g2^10*t^8.597 - g1^34*g2^14*t^8.629 + 2*g1^30*g2^18*t^8.661 + 3*g1^26*g2^22*t^8.693 + (g1^32*t^8.694)/g2^8 + 2*g1^22*g2^26*t^8.725 + g1^18*g2^30*t^8.757 - g1^24*t^8.758 + 2*g1^14*g2^34*t^8.789 + g1^20*g2^4*t^8.79 - 3*g1^16*g2^8*t^8.822 - 2*g1^12*g2^12*t^8.854 + g1^2*g2^46*t^8.885 + 3*g1^8*g2^16*t^8.886 + (g1^14*t^8.888)/g2^14 + 2*g1^4*g2^20*t^8.918 + g2^24*t^8.95 - (3*g1^6*t^8.952)/g2^6 + (2*g2^28*t^8.982)/g1^4 - (g1*t^4.492)/(g2*y) - (g1^17*g2^7*t^7.314)/y + (g1^3*t^7.476)/(g2^3*y) - (g2*t^7.508)/(g1*y) + t^7.67/(g1^15*g2^9*y) + (g1^28*g2^20*t^8.677)/y + (g1^22*g2^2*t^8.774)/y + (g1^18*g2^6*t^8.806)/y + (2*g1^14*g2^10*t^8.838)/y + (3*g1^10*g2^14*t^8.87)/y + (2*g1^6*g2^18*t^8.902)/y + (g1^2*g2^22*t^8.934)/y + (2*g1^4*t^8.968)/(g2^4*y) - (g1*t^4.492*y)/g2 - g1^17*g2^7*t^7.314*y + (g1^3*t^7.476*y)/g2^3 - (g2*t^7.508*y)/g1 + (t^7.67*y)/(g1^15*g2^9) + g1^28*g2^20*t^8.677*y + g1^22*g2^2*t^8.774*y + g1^18*g2^6*t^8.806*y + 2*g1^14*g2^10*t^8.838*y + 3*g1^10*g2^14*t^8.87*y + 2*g1^6*g2^18*t^8.902*y + g1^2*g2^22*t^8.934*y + (2*g1^4*t^8.968*y)/g2^4 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
2701 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{2}M_{6}$ + ${ }M_{7}\phi_{1}^{2}$ + ${ }M_{5}M_{8}$ | 0.6971 | 0.8562 | 0.8141 | [M:[0.9343, 1.0398, 1.0129, 0.9613, 1.0387, 0.9602, 1.0129, 0.9613], q:[0.5457, 0.5199], qb:[0.4413, 0.5188], phi:[0.4935]] | t^2.803 + t^2.881 + 2*t^2.884 + 2*t^3.039 + t^3.194 + t^4.129 + t^4.361 + t^4.364 + t^4.442 + t^4.594 + t^4.597 + t^4.6 + t^4.674 + t^4.678 + t^4.755 + t^5.606 + t^5.684 + t^5.687 + t^5.761 + t^5.764 + 2*t^5.768 + 2*t^5.842 + t^5.919 + 3*t^5.923 - 4*t^6. - t^4.481/y - t^4.481*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
997 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{2}M_{6}$ | 0.6951 | 0.8535 | 0.8144 | [M:[0.9385, 1.0457, 1.0079, 0.9764, 1.0236, 0.9543], q:[0.5386, 0.5229], qb:[0.4535, 0.5008], phi:[0.4961]] | t^2.816 + t^2.863 + t^2.929 + t^2.976 + t^3.024 + t^3.071 + t^3.118 + t^4.209 + t^4.351 + t^4.417 + t^4.465 + t^4.493 + t^4.559 + t^4.606 + t^4.625 + t^4.673 + t^4.72 + t^5.631 + t^5.678 + t^5.726 + t^5.792 + 2*t^5.839 + t^5.886 + t^5.906 + t^5.934 + t^5.953 + t^5.981 - 2*t^6. - t^4.488/y - t^4.488*y | detail |