Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
1537 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{3}M_{6}$ | 0.661 | 0.8142 | 0.8118 | [M:[1.0344, 0.7713, 0.9656, 0.8401, 1.1599, 1.0344], q:[0.58, 0.3856], qb:[0.4544, 0.7743], phi:[0.4514]] | [M:[[22], [-30], [-22], [14], [-14], [22]], q:[[-7], [-15]], qb:[[29], [1]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }M_{6}$, ${ }M_{5}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}M_{6}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{4}$, ${ }M_{4}M_{6}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}q_{2}^{2}$ | ${}$ | -2 | t^2.314 + t^2.52 + t^2.709 + 2*t^3.103 + t^3.48 + t^3.668 + t^3.874 + t^4.063 + t^4.081 + t^4.251 + t^4.457 + t^4.628 + 2*t^4.834 + t^5.022 + t^5.04 + t^5.229 + 2*t^5.417 + t^5.623 + 2*t^5.812 + t^5.982 - 2*t^6. + 2*t^6.188 + 2*t^6.206 + t^6.377 + t^6.395 + t^6.565 + t^6.583 + t^6.601 + 2*t^6.771 + t^6.789 + t^6.941 + t^6.978 + 2*t^7.148 + t^7.166 + 2*t^7.184 + 2*t^7.336 + t^7.354 - t^7.372 + 3*t^7.543 + 2*t^7.561 + 2*t^7.731 + t^7.749 + t^7.919 + 2*t^7.937 + t^7.955 + 2*t^8.126 + t^8.144 + t^8.162 + t^8.296 - 2*t^8.314 + t^8.332 + 2*t^8.502 + t^8.52 + t^8.538 + t^8.69 - t^8.709 + t^8.879 + 4*t^8.915 - t^4.354/y - t^6.668/y - t^7.063/y + t^7.251/y - t^7.457/y + t^7.646/y + t^7.834/y + t^8.022/y + t^8.04/y + t^8.229/y + (2*t^8.417)/y + (2*t^8.623)/y + t^8.794/y + (2*t^8.812)/y - t^4.354*y - t^6.668*y - t^7.063*y + t^7.251*y - t^7.457*y + t^7.646*y + t^7.834*y + t^8.022*y + t^8.04*y + t^8.229*y + 2*t^8.417*y + 2*t^8.623*y + t^8.794*y + 2*t^8.812*y | t^2.314/g1^30 + g1^14*t^2.52 + t^2.709/g1^4 + 2*g1^22*t^3.103 + t^3.48/g1^14 + t^3.668/g1^32 + g1^12*t^3.874 + t^4.063/g1^6 + g1^56*t^4.081 + t^4.251/g1^24 + g1^20*t^4.457 + t^4.628/g1^60 + (2*t^4.834)/g1^16 + t^5.022/g1^34 + g1^28*t^5.04 + g1^10*t^5.229 + (2*t^5.417)/g1^8 + g1^36*t^5.623 + 2*g1^18*t^5.812 + t^5.982/g1^62 - 2*t^6. + (2*t^6.188)/g1^18 + 2*g1^44*t^6.206 + t^6.377/g1^36 + g1^26*t^6.395 + t^6.565/g1^54 + g1^8*t^6.583 + g1^70*t^6.601 + (2*t^6.771)/g1^10 + g1^52*t^6.789 + t^6.941/g1^90 + g1^34*t^6.978 + (2*t^7.148)/g1^46 + g1^16*t^7.166 + 2*g1^78*t^7.184 + (2*t^7.336)/g1^64 + t^7.354/g1^2 - g1^60*t^7.372 + (3*t^7.543)/g1^20 + 2*g1^42*t^7.561 + (2*t^7.731)/g1^38 + g1^24*t^7.749 + t^7.919/g1^56 + 2*g1^6*t^7.937 + g1^68*t^7.955 + (2*t^8.126)/g1^12 + g1^50*t^8.144 + g1^112*t^8.162 + t^8.296/g1^92 - (2*t^8.314)/g1^30 + g1^32*t^8.332 + (2*t^8.502)/g1^48 + g1^14*t^8.52 + g1^76*t^8.538 + t^8.69/g1^66 - t^8.709/g1^4 + t^8.879/g1^84 + 4*g1^40*t^8.915 - t^4.354/(g1^2*y) - t^6.668/(g1^32*y) - t^7.063/(g1^6*y) + t^7.251/(g1^24*y) - (g1^20*t^7.457)/y + (g1^2*t^7.646)/y + t^7.834/(g1^16*y) + t^8.022/(g1^34*y) + (g1^28*t^8.04)/y + (g1^10*t^8.229)/y + (2*t^8.417)/(g1^8*y) + (2*g1^36*t^8.623)/y + t^8.794/(g1^44*y) + (2*g1^18*t^8.812)/y - (t^4.354*y)/g1^2 - (t^6.668*y)/g1^32 - (t^7.063*y)/g1^6 + (t^7.251*y)/g1^24 - g1^20*t^7.457*y + g1^2*t^7.646*y + (t^7.834*y)/g1^16 + (t^8.022*y)/g1^34 + g1^28*t^8.04*y + g1^10*t^8.229*y + (2*t^8.417*y)/g1^8 + 2*g1^36*t^8.623*y + (t^8.794*y)/g1^44 + 2*g1^18*t^8.812*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
983 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{1}M_{3}$ | 0.6651 | 0.8215 | 0.8096 | [M:[1.0528, 0.7461, 0.9472, 0.8518, 1.1482], q:[0.5741, 0.3731], qb:[0.4788, 0.7751], phi:[0.4497]] | t^2.238 + t^2.555 + t^2.698 + t^2.841 + t^3.159 + t^3.445 + t^3.588 + t^3.905 + t^4.048 + t^4.191 + t^4.222 + t^4.477 + t^4.508 + 2*t^4.794 + t^4.937 + t^5.08 + t^5.111 + t^5.254 + 2*t^5.397 + t^5.54 + t^5.683 + t^5.826 + t^5.857 - t^6. - t^4.349/y - t^4.349*y | detail |