Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1519 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{5}M_{6}$ 0.6471 0.8079 0.801 [M:[1.0155, 0.889, 1.111, 0.7936, 1.2064, 0.7936], q:[0.54, 0.4445], qb:[0.3491, 0.7619], phi:[0.4761]] [M:[[-38], [14], [-14], [-10], [10], [-10]], q:[[31], [7]], qb:[[-17], [3]], phi:[[-6]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{6}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{6}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{6}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}M_{6}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{3}M_{4}$, ${ }M_{3}M_{6}$, ${ }\phi_{1}^{4}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{6}\phi_{1}\tilde{q}_{1}^{2}$ ${}$ -2 2*t^2.381 + t^2.667 + t^2.857 + t^3.047 + t^3.333 + t^3.523 + t^3.809 + t^3.906 + 2*t^4.095 + t^4.382 + t^4.668 + 3*t^4.761 + 2*t^5.048 + 2*t^5.238 + t^5.334 + t^5.427 + t^5.524 + 2*t^5.714 + 3*t^5.903 - 2*t^6. + t^6.093 + 3*t^6.19 - t^6.286 + 2*t^6.38 + 3*t^6.476 + t^6.569 + 3*t^6.762 + t^6.856 + t^6.952 + t^7.046 + 2*t^7.049 + 4*t^7.142 - t^7.239 + t^7.332 + t^7.335 + 3*t^7.428 + 5*t^7.618 + t^7.715 + t^7.808 + 3*t^7.905 + t^8.001 + 2*t^8.094 + 3*t^8.191 + 4*t^8.284 - 4*t^8.381 + t^8.474 + t^8.477 + 5*t^8.57 + t^8.574 - 5*t^8.667 + 4*t^8.76 + 2*t^8.764 + 2*t^8.857 + 2*t^8.95 - 3*t^8.953 - t^4.428/y - t^6.809/y - t^7.285/y + t^7.382/y - t^7.475/y + t^7.572/y + t^7.761/y + (3*t^8.048)/y + (2*t^8.238)/y + (2*t^8.427)/y + t^8.524/y + (3*t^8.714)/y + (3*t^8.903)/y - t^4.428*y - t^6.809*y - t^7.285*y + t^7.382*y - t^7.475*y + t^7.572*y + t^7.761*y + 3*t^8.048*y + 2*t^8.238*y + 2*t^8.427*y + t^8.524*y + 3*t^8.714*y + 3*t^8.903*y (2*t^2.381)/g1^10 + g1^14*t^2.667 + t^2.857/g1^12 + t^3.047/g1^38 + t^3.333/g1^14 + t^3.523/g1^40 + t^3.809/g1^16 + g1^34*t^3.906 + 2*g1^8*t^4.095 + g1^32*t^4.382 + g1^56*t^4.668 + (3*t^4.761)/g1^20 + 2*g1^4*t^5.048 + (2*t^5.238)/g1^22 + g1^28*t^5.334 + t^5.427/g1^48 + g1^2*t^5.524 + (2*t^5.714)/g1^24 + (3*t^5.903)/g1^50 - 2*t^6. + t^6.093/g1^76 + (3*t^6.19)/g1^26 - g1^24*t^6.286 + (2*t^6.38)/g1^52 + (3*t^6.476)/g1^2 + t^6.569/g1^78 + 3*g1^22*t^6.762 + t^6.856/g1^54 + t^6.952/g1^4 + t^7.046/g1^80 + 2*g1^46*t^7.049 + (4*t^7.142)/g1^30 - g1^20*t^7.239 + t^7.332/g1^56 + g1^70*t^7.335 + (3*t^7.428)/g1^6 + (5*t^7.618)/g1^32 + g1^18*t^7.715 + t^7.808/g1^58 + (3*t^7.905)/g1^8 + g1^42*t^8.001 + (2*t^8.094)/g1^34 + 3*g1^16*t^8.191 + (4*t^8.284)/g1^60 - (4*t^8.381)/g1^10 + t^8.474/g1^86 + g1^40*t^8.477 + (5*t^8.57)/g1^36 + g1^90*t^8.574 - 5*g1^14*t^8.667 + (4*t^8.76)/g1^62 + 2*g1^64*t^8.764 + (2*t^8.857)/g1^12 + (2*t^8.95)/g1^88 - 3*g1^38*t^8.953 - t^4.428/(g1^6*y) - t^6.809/(g1^16*y) - t^7.285/(g1^18*y) + (g1^32*t^7.382)/y - t^7.475/(g1^44*y) + (g1^6*t^7.572)/y + t^7.761/(g1^20*y) + (3*g1^4*t^8.048)/y + (2*t^8.238)/(g1^22*y) + (2*t^8.427)/(g1^48*y) + (g1^2*t^8.524)/y + (3*t^8.714)/(g1^24*y) + (3*t^8.903)/(g1^50*y) - (t^4.428*y)/g1^6 - (t^6.809*y)/g1^16 - (t^7.285*y)/g1^18 + g1^32*t^7.382*y - (t^7.475*y)/g1^44 + g1^6*t^7.572*y + (t^7.761*y)/g1^20 + 3*g1^4*t^8.048*y + (2*t^8.238*y)/g1^22 + (2*t^8.427*y)/g1^48 + g1^2*t^8.524*y + (3*t^8.714*y)/g1^24 + (3*t^8.903*y)/g1^50


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
980 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{2}M_{3}$ 0.6303 0.778 0.8102 [M:[1.0252, 0.8855, 1.1145, 0.7961, 1.2039], q:[0.5321, 0.4427], qb:[0.3534, 0.7612], phi:[0.4777]] t^2.388 + t^2.656 + t^2.866 + t^3.075 + t^3.344 + t^3.553 + t^3.612 + t^3.821 + t^3.88 + 2*t^4.089 + t^4.357 + t^4.626 + t^4.777 + t^5.045 + t^5.254 + t^5.313 + t^5.522 + t^5.732 + 2*t^5.941 - t^6. - t^4.433/y - t^4.433*y detail