Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1501 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}M_{6}$ 0.6915 0.8483 0.8152 [M:[1.0027, 1.0, 0.9973, 1.0053, 0.9947, 0.9947], q:[0.4973, 0.5], qb:[0.5053, 0.4947], phi:[0.5007]] [M:[[-4], [0], [4], [-8], [8], [8]], q:[[4], [0]], qb:[[-8], [8]], phi:[[-1]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{1}\tilde{q}_{2}$, ${ }M_{5}$, ${ }M_{6}$, ${ }M_{3}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{3}M_{5}$, ${ }M_{3}M_{6}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{2}M_{6}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$ ${}$ -2 t^2.976 + 2*t^2.984 + t^2.992 + t^3. + t^3.004 + t^3.008 + t^4.47 + t^4.478 + 2*t^4.486 + t^4.494 + 2*t^4.502 + t^4.51 + t^4.518 + t^4.534 + t^5.952 + 2*t^5.96 + 3*t^5.968 + 2*t^5.976 + t^5.98 + 2*t^5.984 + 2*t^5.988 + t^5.996 - 2*t^6. + t^6.004 + t^6.012 - t^6.016 - t^6.024 - t^6.032 + t^7.446 + 3*t^7.454 + 4*t^7.462 - t^7.466 + 5*t^7.47 + 5*t^7.478 - t^7.482 + 5*t^7.486 + t^7.49 + 3*t^7.494 - t^7.498 + t^7.502 + t^7.506 + t^7.51 + t^7.518 + t^7.522 - t^7.53 + t^7.538 + t^7.542 + t^8.928 + 2*t^8.936 + t^8.94 + 3*t^8.944 + t^8.948 + 4*t^8.952 + 3*t^8.956 + 3*t^8.96 + 4*t^8.964 + 7*t^8.972 - 5*t^8.976 + 5*t^8.98 - 7*t^8.984 + 6*t^8.988 - 5*t^8.992 + 3*t^8.996 - t^4.502/y - t^7.486/y + t^7.498/y - t^7.506/y + t^7.518/y + (2*t^8.96)/y + (2*t^8.968)/y + (3*t^8.976)/y + t^8.98/y + (3*t^8.984)/y + (2*t^8.988)/y + (3*t^8.992)/y + t^8.996/y - t^4.502*y - t^7.486*y + t^7.498*y - t^7.506*y + t^7.518*y + 2*t^8.96*y + 2*t^8.968*y + 3*t^8.976*y + t^8.98*y + 3*t^8.984*y + 2*t^8.988*y + 3*t^8.992*y + t^8.996*y g1^12*t^2.976 + 2*g1^8*t^2.984 + g1^4*t^2.992 + t^3. + t^3.004/g1^2 + t^3.008/g1^4 + g1^15*t^4.47 + g1^11*t^4.478 + 2*g1^7*t^4.486 + g1^3*t^4.494 + (2*t^4.502)/g1 + t^4.51/g1^5 + t^4.518/g1^9 + t^4.534/g1^17 + g1^24*t^5.952 + 2*g1^20*t^5.96 + 3*g1^16*t^5.968 + 2*g1^12*t^5.976 + g1^10*t^5.98 + 2*g1^8*t^5.984 + 2*g1^6*t^5.988 + g1^2*t^5.996 - 2*t^6. + t^6.004/g1^2 + t^6.012/g1^6 - t^6.016/g1^8 - t^6.024/g1^12 - t^6.032/g1^16 + g1^27*t^7.446 + 3*g1^23*t^7.454 + 4*g1^19*t^7.462 - g1^17*t^7.466 + 5*g1^15*t^7.47 + 5*g1^11*t^7.478 - g1^9*t^7.482 + 5*g1^7*t^7.486 + g1^5*t^7.49 + 3*g1^3*t^7.494 - g1*t^7.498 + t^7.502/g1 + t^7.506/g1^3 + t^7.51/g1^5 + t^7.518/g1^9 + t^7.522/g1^11 - t^7.53/g1^15 + t^7.538/g1^19 + t^7.542/g1^21 + g1^36*t^8.928 + 2*g1^32*t^8.936 + g1^30*t^8.94 + 3*g1^28*t^8.944 + g1^26*t^8.948 + 4*g1^24*t^8.952 + 3*g1^22*t^8.956 + 3*g1^20*t^8.96 + 4*g1^18*t^8.964 + 7*g1^14*t^8.972 - 5*g1^12*t^8.976 + 5*g1^10*t^8.98 - 7*g1^8*t^8.984 + 6*g1^6*t^8.988 - 5*g1^4*t^8.992 + 3*g1^2*t^8.996 - t^4.502/(g1*y) - (g1^7*t^7.486)/y + (g1*t^7.498)/y - t^7.506/(g1^3*y) + t^7.518/(g1^9*y) + (2*g1^20*t^8.96)/y + (2*g1^16*t^8.968)/y + (3*g1^12*t^8.976)/y + (g1^10*t^8.98)/y + (3*g1^8*t^8.984)/y + (2*g1^6*t^8.988)/y + (3*g1^4*t^8.992)/y + (g1^2*t^8.996)/y - (t^4.502*y)/g1 - g1^7*t^7.486*y + g1*t^7.498*y - (t^7.506*y)/g1^3 + (t^7.518*y)/g1^9 + 2*g1^20*t^8.96*y + 2*g1^16*t^8.968*y + 3*g1^12*t^8.976*y + g1^10*t^8.98*y + 3*g1^8*t^8.984*y + 2*g1^6*t^8.988*y + 3*g1^4*t^8.992*y + g1^2*t^8.996*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
966 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}^{2}$ + ${ }M_{1}M_{3}$ 0.6921 0.8476 0.8165 [M:[0.9904, 1.0, 1.0096, 0.9809, 1.0191], q:[0.5096, 0.5], qb:[0.4809, 0.5191], phi:[0.4976]] t^2.943 + t^2.971 + t^2.986 + t^3. + t^3.029 + t^3.057 + t^3.086 + t^4.378 + t^4.436 + t^4.464 + 2*t^4.493 + t^4.521 + 2*t^4.55 + t^4.579 + t^4.607 + t^5.928 + t^5.957 + t^5.971 + t^5.986 - t^6. - t^4.493/y - t^4.493*y detail