Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
150 SU2adj1nf2 $\phi_1q_1^2$ + $ \phi_1q_2^2$ + $ M_1q_1\tilde{q}_1$ + $ M_1^2$ + $ \phi_1\tilde{q}_1^2\tilde{q}_2^2$ 0.516 0.641 0.805 [X:[], M:[1.0], q:[0.8, 0.8], qb:[0.2, 0.6], phi:[0.4]] [X:[], M:[[0]], q:[[0], [0]], qb:[[0], [0]], phi:[[0]]] 0 {a: 129/250, c: 641/1000, M1: 1, q1: 4/5, q2: 4/5, qb1: 1/5, qb2: 3/5, phi1: 2/5}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$\phi_1^2$, $ \phi_1\tilde{q}_1^2$, $ \tilde{q}_1\tilde{q}_2$, $ M_1$, $ q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ \phi_1^4$, $ q_1q_2$, $ \phi_1^3\tilde{q}_1^2$, $ \phi_1^2\tilde{q}_1^4$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_1\phi_1^2$, $ M_1\phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_1^3$, $ M_1\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1^2\tilde{q}_2$ $M_1q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ \phi_1^3\tilde{q}_1\tilde{q}_2$ 1 3*t^2.4 + 2*t^3. + t^3.6 + 2*t^4.2 + 7*t^4.8 + 4*t^5.4 + t^6. + 2*t^6.6 + 11*t^7.2 + 4*t^7.8 - t^4.2/y - t^6.6/y + (4*t^7.8)/y + (6*t^8.4)/y - t^4.2*y - t^6.6*y + 4*t^7.8*y + 6*t^8.4*y 3*t^2.4 + 2*t^3. + t^3.6 + 2*t^4.2 + 7*t^4.8 + 4*t^5.4 + t^6. + 2*t^6.6 + 11*t^7.2 + 4*t^7.8 - t^4.2/y - t^6.6/y + (4*t^7.8)/y + (6*t^8.4)/y - t^4.2*y - t^6.6*y + 4*t^7.8*y + 6*t^8.4*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
242 $\phi_1q_1^2$ + $ \phi_1q_2^2$ + $ M_1q_1\tilde{q}_1$ + $ M_1^2$ + $ \phi_1\tilde{q}_1^2\tilde{q}_2^2$ + $ M_2\phi_1\tilde{q}_1\tilde{q}_2$ 0.5325 0.67 0.7948 [X:[], M:[1.0, 0.8], q:[0.8, 0.8], qb:[0.2, 0.6], phi:[0.4]] 4*t^2.4 + 2*t^3. + 2*t^4.2 + 11*t^4.8 + 6*t^5.4 - 2*t^6. - t^4.2/y - t^4.2*y detail {a: 213/400, c: 67/100, M1: 1, M2: 4/5, q1: 4/5, q2: 4/5, qb1: 1/5, qb2: 3/5, phi1: 2/5}


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
91 SU2adj1nf2 $\phi_1q_1^2$ + $ \phi_1q_2^2$ + $ M_1q_1\tilde{q}_1$ + $ M_1^2$ 0.5344 0.6715 0.7957 [X:[], M:[1.0], q:[0.7805, 0.7805], qb:[0.2195, 0.4638], phi:[0.4389]] t^2.05 + 2*t^2.63 + 2*t^3. + t^3.37 + 2*t^3.73 + 2*t^4.1 + 3*t^4.68 + 2*t^5.05 + 2*t^5.27 + t^5.42 + 2*t^5.63 + 2*t^5.78 + t^6. - t^4.32/y - t^4.32*y detail