Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
1469 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{4}M_{7}$ | 0.7196 | 0.8908 | 0.8078 | [M:[1.0602, 0.8195, 0.8503, 1.0293, 0.9707, 0.909, 0.9707], q:[0.5301, 0.4097], qb:[0.6196, 0.5609], phi:[0.4699]] | [M:[[2, 2], [-6, -6], [-7, -1], [3, -3], [-3, 3], [-1, -7], [-3, 3]], q:[[1, 1], [-3, -3]], qb:[[6, 0], [0, 6]], phi:[[-1, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }M_{3}$, ${ }M_{6}$, ${ }\phi_{1}^{2}$, ${ }M_{5}$, ${ }M_{7}$, ${ }M_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{3}M_{6}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{2}M_{7}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{6}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{3}M_{7}$, ${ }M_{1}M_{2}$, ${ }M_{5}M_{6}$, ${ }M_{6}M_{7}$, ${ }\phi_{1}^{4}$, ${ }M_{1}M_{3}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{5}^{2}$, ${ }M_{5}M_{7}$, ${ }M_{7}^{2}$ | ${}$ | -3 | t^2.458 + t^2.551 + t^2.727 + t^2.819 + 2*t^2.912 + t^3.181 + t^3.868 + t^4.229 + t^4.322 + t^4.498 + t^4.59 + t^4.683 + t^4.775 + t^4.859 + t^4.917 + t^4.951 + t^5.009 + t^5.102 + t^5.127 + t^5.185 + 2*t^5.278 + 2*t^5.37 + t^5.454 + 2*t^5.463 + 3*t^5.639 + 2*t^5.732 + 2*t^5.824 - 3*t^6. + t^6.093 - t^6.176 - t^6.268 + t^6.327 - t^6.361 + t^6.419 - t^6.454 + t^6.595 - t^6.63 + 2*t^6.688 + 3*t^6.78 + t^6.873 + t^6.956 + 3*t^7.049 + 3*t^7.141 + t^7.225 + 3*t^7.234 + t^7.317 + t^7.326 + t^7.375 + 2*t^7.41 + t^7.468 + 3*t^7.502 + t^7.56 + t^7.586 + 2*t^7.595 + t^7.644 + t^7.653 + t^7.678 + 2*t^7.687 + 3*t^7.736 - t^7.771 + 3*t^7.829 + t^7.854 + t^7.912 + 2*t^7.921 + t^8.005 + 2*t^8.014 + 3*t^8.097 - t^8.132 + t^8.181 + 4*t^8.19 - t^8.224 + 3*t^8.282 + 2*t^8.366 + 2*t^8.375 - t^8.4 - 2*t^8.458 + 3*t^8.644 - 5*t^8.727 + 2*t^8.736 + t^8.785 - 3*t^8.819 + t^8.878 - t^8.903 - 7*t^8.912 + t^8.97 - t^4.41/y - t^6.868/y - t^6.961/y - t^7.137/y - t^7.322/y + t^7.498/y + t^7.683/y + t^7.859/y + t^7.951/y + t^8.009/y + t^8.185/y + (2*t^8.278)/y + (3*t^8.37)/y + (2*t^8.463)/y + t^8.546/y + (3*t^8.639)/y + (3*t^8.732)/y + t^8.824/y + t^8.907/y - t^4.41*y - t^6.868*y - t^6.961*y - t^7.137*y - t^7.322*y + t^7.498*y + t^7.683*y + t^7.859*y + t^7.951*y + t^8.009*y + t^8.185*y + 2*t^8.278*y + 3*t^8.37*y + 2*t^8.463*y + t^8.546*y + 3*t^8.639*y + 3*t^8.732*y + t^8.824*y + t^8.907*y | t^2.458/(g1^6*g2^6) + t^2.551/(g1^7*g2) + t^2.727/(g1*g2^7) + t^2.819/(g1^2*g2^2) + (2*g2^3*t^2.912)/g1^3 + g1^2*g2^2*t^3.181 + t^3.868/(g1^7*g2^7) + t^4.229/(g1^3*g2^3) + (g2^2*t^4.322)/g1^4 + (g1^2*t^4.498)/g2^4 + g1*g2*t^4.59 + g2^6*t^4.683 + (g2^11*t^4.775)/g1 + g1^6*t^4.859 + t^4.917/(g1^12*g2^12) + g1^5*g2^5*t^4.951 + t^5.009/(g1^13*g2^7) + t^5.102/(g1^14*g2^2) + (g1^11*t^5.127)/g2 + t^5.185/(g1^7*g2^13) + (2*t^5.278)/(g1^8*g2^8) + (2*t^5.37)/(g1^9*g2^3) + t^5.454/(g1^2*g2^14) + (2*g2^2*t^5.463)/g1^10 + (3*t^5.639)/(g1^4*g2^4) + (2*g2*t^5.732)/g1^5 + (2*g2^6*t^5.824)/g1^6 - 3*t^6. + (g2^5*t^6.093)/g1 - (g1^6*t^6.176)/g2^6 - (g1^5*t^6.268)/g2 + t^6.327/(g1^13*g2^13) - g1^4*g2^4*t^6.361 + t^6.419/(g1^14*g2^8) - g1^3*g2^9*t^6.454 + t^6.595/(g1^8*g2^14) - g1^9*g2^3*t^6.63 + (2*t^6.688)/(g1^9*g2^9) + (3*t^6.78)/(g1^10*g2^4) + (g2*t^6.873)/g1^11 + t^6.956/(g1^4*g2^10) + (3*t^7.049)/(g1^5*g2^5) + (3*t^7.141)/g1^6 + (g1*t^7.225)/g2^11 + (3*g2^5*t^7.234)/g1^7 + t^7.317/g2^6 + (g2^10*t^7.326)/g1^8 + t^7.375/(g1^18*g2^18) + (2*t^7.41)/(g1*g2) + t^7.468/(g1^19*g2^13) + (3*g2^4*t^7.502)/g1^2 + t^7.56/(g1^20*g2^8) + (g1^5*t^7.586)/g2^7 + (2*g2^9*t^7.595)/g1^3 + t^7.644/(g1^13*g2^19) + t^7.653/(g1^21*g2^3) + (g1^4*t^7.678)/g2^2 + (2*g2^14*t^7.687)/g1^4 + (3*t^7.736)/(g1^14*g2^14) - g1^3*g2^3*t^7.771 + (3*t^7.829)/(g1^15*g2^9) + (g1^10*t^7.854)/g2^8 + t^7.912/(g1^8*g2^20) + (2*t^7.921)/(g1^16*g2^4) + t^8.005/(g1^9*g2^15) + (2*g2*t^8.014)/g1^17 + (3*t^8.097)/(g1^10*g2^10) - g1^7*g2^7*t^8.132 + t^8.181/(g1^3*g2^21) + (4*t^8.19)/(g1^11*g2^5) - g1^6*g2^12*t^8.224 + (3*t^8.282)/g1^12 + (2*t^8.366)/(g1^5*g2^11) + (2*g2^5*t^8.375)/g1^13 - g1^12*g2^6*t^8.4 - (2*t^8.458)/(g1^6*g2^6) + (3*g2^4*t^8.644)/g1^8 - (5*t^8.727)/(g1*g2^7) + (2*g2^9*t^8.736)/g1^9 + t^8.785/(g1^19*g2^19) - (3*t^8.819)/(g1^2*g2^2) + t^8.878/(g1^20*g2^14) - (g1^5*t^8.903)/g2^13 - (7*g2^3*t^8.912)/g1^3 + t^8.97/(g1^21*g2^9) - t^4.41/(g1*g2*y) - t^6.868/(g1^7*g2^7*y) - t^6.961/(g1^8*g2^2*y) - t^7.137/(g1^2*g2^8*y) - (g2^2*t^7.322)/(g1^4*y) + (g1^2*t^7.498)/(g2^4*y) + (g2^6*t^7.683)/y + (g1^6*t^7.859)/y + (g1^5*g2^5*t^7.951)/y + t^8.009/(g1^13*g2^7*y) + t^8.185/(g1^7*g2^13*y) + (2*t^8.278)/(g1^8*g2^8*y) + (3*t^8.37)/(g1^9*g2^3*y) + (2*g2^2*t^8.463)/(g1^10*y) + t^8.546/(g1^3*g2^9*y) + (3*t^8.639)/(g1^4*g2^4*y) + (3*g2*t^8.732)/(g1^5*y) + (g2^6*t^8.824)/(g1^6*y) + (g1*t^8.907)/(g2^5*y) - (t^4.41*y)/(g1*g2) - (t^6.868*y)/(g1^7*g2^7) - (t^6.961*y)/(g1^8*g2^2) - (t^7.137*y)/(g1^2*g2^8) - (g2^2*t^7.322*y)/g1^4 + (g1^2*t^7.498*y)/g2^4 + g2^6*t^7.683*y + g1^6*t^7.859*y + g1^5*g2^5*t^7.951*y + (t^8.009*y)/(g1^13*g2^7) + (t^8.185*y)/(g1^7*g2^13) + (2*t^8.278*y)/(g1^8*g2^8) + (3*t^8.37*y)/(g1^9*g2^3) + (2*g2^2*t^8.463*y)/g1^10 + (t^8.546*y)/(g1^3*g2^9) + (3*t^8.639*y)/(g1^4*g2^4) + (3*g2*t^8.732*y)/g1^5 + (g2^6*t^8.824*y)/g1^6 + (g1*t^8.907*y)/g2^5 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
952 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ | 0.7182 | 0.8876 | 0.8092 | [M:[1.0601, 0.8198, 0.8798, 1.0, 1.0, 0.8798], q:[0.53, 0.4099], qb:[0.5901, 0.5901], phi:[0.47]] | t^2.459 + 2*t^2.64 + t^2.82 + 2*t^3. + t^3.18 + t^3.869 + t^4.23 + 2*t^4.41 + t^4.59 + 2*t^4.77 + t^4.919 + 3*t^4.951 + 2*t^5.099 + 4*t^5.279 + 2*t^5.459 + 5*t^5.64 + 2*t^5.82 - 2*t^6. - t^4.41/y - t^4.41*y | detail |