Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
1456 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{4}M_{7}$ | 0.71 | 0.8746 | 0.8118 | [M:[0.8432, 1.0655, 0.9345, 0.9742, 1.0258, 0.883, 1.0258], q:[0.624, 0.5328], qb:[0.4415, 0.493], phi:[0.4772]] | [M:[[20, 12], [-8, -8], [8, 8], [4, -4], [-4, 4], [16, 0], [-4, 4]], q:[[-16, -8], [-4, -4]], qb:[[8, 0], [0, 8]], phi:[[3, 1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }M_{6}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{5}$, ${ }M_{7}$, ${ }M_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{1}M_{7}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{5}M_{6}$, ${ }M_{6}M_{7}$, ${ }\phi_{1}^{4}$, ${ }M_{3}M_{5}$, ${ }M_{3}M_{7}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$ | ${}$ | -3 | t^2.53 + t^2.649 + t^2.803 + t^2.863 + 2*t^3.077 + t^3.197 + t^4.081 + t^4.235 + t^4.354 + t^4.39 + t^4.509 + 2*t^4.628 + t^4.783 + t^4.902 + t^5.059 + t^5.176 + t^5.179 + t^5.298 + t^5.333 + t^5.393 + t^5.512 + 2*t^5.607 + t^5.667 + 2*t^5.726 + t^5.881 + 2*t^5.94 - 3*t^6. + t^6.06 - t^6.119 + 2*t^6.155 - t^6.274 - t^6.548 + t^6.61 + t^6.729 + t^6.765 + 2*t^6.884 + t^6.919 + t^6.944 + t^7.003 + 2*t^7.038 + t^7.098 + 3*t^7.158 + t^7.193 + t^7.253 + 2*t^7.277 + 2*t^7.312 + 2*t^7.432 + 2*t^7.467 + t^7.491 - t^7.526 + 2*t^7.586 + t^7.589 + 2*t^7.705 + t^7.708 - t^7.765 + t^7.825 + t^7.828 + t^7.86 + t^7.863 - t^7.919 + t^7.922 + t^7.947 + t^7.979 + t^8.042 + 2*t^8.137 + 2*t^8.161 + t^8.196 + t^8.253 + 2*t^8.256 - t^8.313 + t^8.316 + t^8.372 + t^8.375 + t^8.41 + t^8.435 + 3*t^8.47 - 3*t^8.53 + 3*t^8.589 + t^8.625 - 5*t^8.649 + t^8.684 + 2*t^8.709 + 2*t^8.744 - t^8.768 + t^8.779 - 2*t^8.803 - t^8.863 + t^8.898 - 3*t^8.923 + t^8.982 - t^4.432/y - t^6.961/y - t^7.081/y - t^7.295/y + t^7.354/y - t^7.509/y + t^7.568/y + t^7.783/y + t^7.902/y + t^8.179/y + t^8.333/y + t^8.393/y + t^8.452/y + t^8.512/y + (2*t^8.607)/y + t^8.667/y + (3*t^8.726)/y + t^8.845/y + (2*t^8.881)/y + (2*t^8.94)/y - t^4.432*y - t^6.961*y - t^7.081*y - t^7.295*y + t^7.354*y - t^7.509*y + t^7.568*y + t^7.783*y + t^7.902*y + t^8.179*y + t^8.333*y + t^8.393*y + t^8.452*y + t^8.512*y + 2*t^8.607*y + t^8.667*y + 3*t^8.726*y + t^8.845*y + 2*t^8.881*y + 2*t^8.94*y | g1^20*g2^12*t^2.53 + g1^16*t^2.649 + g1^8*g2^8*t^2.803 + g1^6*g2^2*t^2.863 + (2*g2^4*t^3.077)/g1^4 + t^3.197/(g1^8*g2^8) + g1^19*g2*t^4.081 + g1^11*g2^9*t^4.235 + (g1^7*t^4.354)/g2^3 + g1^3*g2^17*t^4.39 + (g2^5*t^4.509)/g1 + (2*t^4.628)/(g1^5*g2^7) + (g2*t^4.783)/g1^13 + t^4.902/(g1^17*g2^11) + g1^40*g2^24*t^5.059 + t^5.176/(g1^29*g2^15) + g1^36*g2^12*t^5.179 + g1^32*t^5.298 + g1^28*g2^20*t^5.333 + g1^26*g2^14*t^5.393 + g1^22*g2^2*t^5.512 + 2*g1^16*g2^16*t^5.607 + g1^14*g2^10*t^5.667 + 2*g1^12*g2^4*t^5.726 + g1^4*g2^12*t^5.881 + 2*g1^2*g2^6*t^5.94 - 3*t^6. + t^6.06/(g1^2*g2^6) - t^6.119/(g1^4*g2^12) + (2*g2^8*t^6.155)/g1^8 - t^6.274/(g1^12*g2^4) - t^6.548/(g1^24*g2^8) + g1^39*g2^13*t^6.61 + g1^35*g2*t^6.729 + g1^31*g2^21*t^6.765 + 2*g1^27*g2^9*t^6.884 + g1^23*g2^29*t^6.919 + g1^25*g2^3*t^6.944 + (g1^23*t^7.003)/g2^3 + 2*g1^19*g2^17*t^7.038 + g1^17*g2^11*t^7.098 + 3*g1^15*g2^5*t^7.158 + g1^11*g2^25*t^7.193 + g1^9*g2^19*t^7.253 + (2*g1^11*t^7.277)/g2^7 + 2*g1^7*g2^13*t^7.312 + 2*g1^3*g2*t^7.432 + (2*g2^21*t^7.467)/g1 + (g1*t^7.491)/g2^5 - (g2^15*t^7.526)/g1^3 + (2*g2^9*t^7.586)/g1^5 + g1^60*g2^36*t^7.589 + (2*t^7.705)/(g1^9*g2^3) + g1^56*g2^24*t^7.708 - t^7.765/(g1^11*g2^9) + t^7.825/(g1^13*g2^15) + g1^52*g2^12*t^7.828 + (g2^5*t^7.86)/g1^17 + g1^48*g2^32*t^7.863 - t^7.919/(g1^19*g2) + g1^46*g2^26*t^7.922 + g1^48*t^7.947 + t^7.979/(g1^21*g2^7) + g1^42*g2^14*t^8.042 + 2*g1^36*g2^28*t^8.137 + 2*g1^38*g2^2*t^8.161 + g1^34*g2^22*t^8.196 + t^8.253/(g1^33*g2^11) + 2*g1^32*g2^16*t^8.256 - t^8.313/(g1^35*g2^17) + g1^30*g2^10*t^8.316 + t^8.372/(g1^37*g2^23) + g1^28*g2^4*t^8.375 + g1^24*g2^24*t^8.41 + (g1^26*t^8.435)/g2^2 + 3*g1^22*g2^18*t^8.47 - 3*g1^20*g2^12*t^8.53 + 3*g1^18*g2^6*t^8.589 + g1^14*g2^26*t^8.625 - 5*g1^16*t^8.649 + g1^12*g2^20*t^8.684 + (2*g1^14*t^8.709)/g2^6 + 2*g1^10*g2^14*t^8.744 - (g1^12*t^8.768)/g2^12 + g1^6*g2^34*t^8.779 - 2*g1^8*g2^8*t^8.803 - g1^6*g2^2*t^8.863 + g1^2*g2^22*t^8.898 - (3*g1^4*t^8.923)/g2^4 + (g1^2*t^8.982)/g2^10 - (g1^3*g2*t^4.432)/y - (g1^23*g2^13*t^6.961)/y - (g1^19*g2*t^7.081)/y - (g1^9*g2^3*t^7.295)/y + (g1^7*t^7.354)/(g2^3*y) - (g2^5*t^7.509)/(g1*y) + t^7.568/(g1^3*g2*y) + (g2*t^7.783)/(g1^13*y) + t^7.902/(g1^17*g2^11*y) + (g1^36*g2^12*t^8.179)/y + (g1^28*g2^20*t^8.333)/y + (g1^26*g2^14*t^8.393)/y + (g1^24*g2^8*t^8.452)/y + (g1^22*g2^2*t^8.512)/y + (2*g1^16*g2^16*t^8.607)/y + (g1^14*g2^10*t^8.667)/y + (3*g1^12*g2^4*t^8.726)/y + (g1^8*t^8.845)/(g2^8*y) + (2*g1^4*g2^12*t^8.881)/y + (2*g1^2*g2^6*t^8.94)/y - g1^3*g2*t^4.432*y - g1^23*g2^13*t^6.961*y - g1^19*g2*t^7.081*y - g1^9*g2^3*t^7.295*y + (g1^7*t^7.354*y)/g2^3 - (g2^5*t^7.509*y)/g1 + (t^7.568*y)/(g1^3*g2) + (g2*t^7.783*y)/g1^13 + (t^7.902*y)/(g1^17*g2^11) + g1^36*g2^12*t^8.179*y + g1^28*g2^20*t^8.333*y + g1^26*g2^14*t^8.393*y + g1^24*g2^8*t^8.452*y + g1^22*g2^2*t^8.512*y + 2*g1^16*g2^16*t^8.607*y + g1^14*g2^10*t^8.667*y + 3*g1^12*g2^4*t^8.726*y + (g1^8*t^8.845*y)/g2^8 + 2*g1^4*g2^12*t^8.881*y + 2*g1^2*g2^6*t^8.94*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
943 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ | 0.7134 | 0.8806 | 0.8101 | [M:[0.846, 1.0534, 0.9466, 0.9529, 1.0471, 0.8524], q:[0.6272, 0.5267], qb:[0.4262, 0.5203], phi:[0.4749]] | t^2.538 + t^2.557 + t^2.84 + t^2.849 + t^2.859 + t^3.141 + t^3.16 + t^3.982 + t^4.264 + t^4.283 + t^4.547 + t^4.566 + 2*t^4.585 + t^4.867 + t^4.886 + t^5.076 + t^5.095 + t^5.115 + t^5.188 + t^5.378 + t^5.387 + t^5.397 + t^5.407 + t^5.416 + t^5.679 + t^5.689 + 2*t^5.698 + t^5.708 + t^5.718 + t^5.99 - 2*t^6. - t^4.425/y - t^4.425*y | detail |