Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1449 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{3}M_{6}$ + ${ }M_{7}q_{1}\tilde{q}_{2}$ 0.7095 0.8737 0.8121 [M:[0.8819, 1.0292, 0.9708, 0.9402, 1.0598, 1.0292, 0.8513], q:[0.6035, 0.5146], qb:[0.4256, 0.5452], phi:[0.4778]] [M:[[20, 12], [-8, -8], [8, 8], [4, -4], [-4, 4], [-8, -8], [16, 0]], q:[[-16, -8], [-4, -4]], qb:[[8, 0], [0, 8]], phi:[[3, 1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{7}$, ${ }M_{1}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }M_{6}$, ${ }M_{5}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{7}^{2}$, ${ }M_{1}M_{7}$, ${ }M_{1}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{4}^{2}$, ${ }M_{2}M_{7}$, ${ }M_{6}M_{7}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}M_{6}$, ${ }M_{5}M_{7}$, ${ }\phi_{1}^{4}$, ${ }M_{2}M_{4}$, ${ }M_{4}M_{6}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$ ${}$ -3 t^2.554 + t^2.646 + t^2.821 + t^2.867 + 2*t^3.088 + t^3.179 + t^3.987 + t^4.254 + t^4.346 + 2*t^4.521 + t^4.613 + t^4.704 + t^4.788 + t^4.879 + t^5.055 + t^5.108 + t^5.199 + t^5.291 + t^5.375 + t^5.42 + t^5.512 + 2*t^5.641 + t^5.687 + 2*t^5.733 + t^5.908 + 2*t^5.954 - 3*t^6. + t^6.046 - t^6.092 + 2*t^6.175 - t^6.267 - t^6.534 + t^6.541 + t^6.633 + 2*t^6.808 + t^6.854 + t^6.9 + t^6.991 + 4*t^7.075 + 2*t^7.166 + t^7.212 + t^7.258 + 3*t^7.342 + t^7.35 + t^7.387 + t^7.433 + t^7.525 + t^7.571 + 4*t^7.608 - t^7.654 + t^7.661 + t^7.7 + t^7.753 + t^7.792 - t^7.838 + t^7.845 + 2*t^7.875 + t^7.884 + t^7.928 + t^7.937 + 2*t^7.974 - t^8.013 + t^8.066 + 2*t^8.142 + t^8.158 - t^8.188 + 2*t^8.195 + 2*t^8.241 + t^8.287 + t^8.333 + 2*t^8.379 + t^8.462 + 4*t^8.508 - 4*t^8.554 + 3*t^8.6 - 4*t^8.646 + t^8.691 + 2*t^8.729 - t^8.737 + 3*t^8.775 - 3*t^8.821 - t^8.867 - 2*t^8.912 + t^8.996 - t^4.433/y - t^6.987/y - t^7.079/y - t^7.3/y + t^7.346/y - t^7.521/y + t^7.567/y + t^7.788/y + t^7.879/y + t^8.199/y + t^8.375/y + t^8.42/y + t^8.466/y + t^8.512/y + (2*t^8.641)/y + t^8.687/y + (3*t^8.733)/y + t^8.825/y + (2*t^8.908)/y + (2*t^8.954)/y - t^4.433*y - t^6.987*y - t^7.079*y - t^7.3*y + t^7.346*y - t^7.521*y + t^7.567*y + t^7.788*y + t^7.879*y + t^8.199*y + t^8.375*y + t^8.42*y + t^8.466*y + t^8.512*y + 2*t^8.641*y + t^8.687*y + 3*t^8.733*y + t^8.825*y + 2*t^8.908*y + 2*t^8.954*y g1^16*t^2.554 + g1^20*g2^12*t^2.646 + (g1^4*t^2.821)/g2^4 + g1^6*g2^2*t^2.867 + (2*t^3.088)/(g1^8*g2^8) + (g2^4*t^3.179)/g1^4 + g1^19*g2*t^3.987 + (g1^7*t^4.254)/g2^3 + g1^11*g2^9*t^4.346 + (2*t^4.521)/(g1^5*g2^7) + (g2^5*t^4.613)/g1 + g1^3*g2^17*t^4.704 + t^4.788/(g1^17*g2^11) + (g2*t^4.879)/g1^13 + t^5.055/(g1^29*g2^15) + g1^32*t^5.108 + g1^36*g2^12*t^5.199 + g1^40*g2^24*t^5.291 + (g1^20*t^5.375)/g2^4 + g1^22*g2^2*t^5.42 + g1^26*g2^14*t^5.512 + (2*g1^8*t^5.641)/g2^8 + (g1^10*t^5.687)/g2^2 + 2*g1^12*g2^4*t^5.733 + t^5.908/(g1^4*g2^12) + (2*t^5.954)/(g1^2*g2^6) - 3*t^6. + g1^2*g2^6*t^6.046 - g1^4*g2^12*t^6.092 + (2*t^6.175)/(g1^16*g2^16) - t^6.267/(g1^12*g2^4) - t^6.534/(g1^24*g2^8) + g1^35*g2*t^6.541 + g1^39*g2^13*t^6.633 + (2*g1^23*t^6.808)/g2^3 + g1^25*g2^3*t^6.854 + g1^27*g2^9*t^6.9 + g1^31*g2^21*t^6.991 + (4*g1^11*t^7.075)/g2^7 + 2*g1^15*g2^5*t^7.166 + g1^17*g2^11*t^7.212 + g1^19*g2^17*t^7.258 + (3*t^7.342)/(g1*g2^11) + g1^23*g2^29*t^7.35 + (g1*t^7.387)/g2^5 + g1^3*g2*t^7.433 + g1^7*g2^13*t^7.525 + g1^9*g2^19*t^7.571 + (4*t^7.608)/(g1^13*g2^15) - t^7.654/(g1^11*g2^9) + g1^48*t^7.661 + t^7.7/(g1^9*g2^3) + g1^52*g2^12*t^7.753 + (g2^9*t^7.792)/g1^5 - (g2^15*t^7.838)/g1^3 + g1^56*g2^24*t^7.845 + (2*t^7.875)/(g1^25*g2^19) + (g2^21*t^7.884)/g1 + (g1^36*t^7.928)/g2^4 + g1^60*g2^36*t^7.937 + 2*g1^38*g2^2*t^7.974 - t^8.013/(g1^19*g2) + g1^42*g2^14*t^8.066 + (2*t^8.142)/(g1^37*g2^23) + g1^46*g2^26*t^8.158 - t^8.188/(g1^35*g2^17) + (2*g1^24*t^8.195)/g2^8 + (2*g1^26*t^8.241)/g2^2 + g1^28*g2^4*t^8.287 + g1^30*g2^10*t^8.333 + 2*g1^32*g2^16*t^8.379 + (g1^12*t^8.462)/g2^12 + (4*g1^14*t^8.508)/g2^6 - 4*g1^16*t^8.554 + 3*g1^18*g2^6*t^8.6 - 4*g1^20*g2^12*t^8.646 + g1^22*g2^18*t^8.691 + (2*t^8.729)/g2^16 - g1^24*g2^24*t^8.737 + (3*g1^2*t^8.775)/g2^10 - (3*g1^4*t^8.821)/g2^4 - g1^6*g2^2*t^8.867 - 2*g1^8*g2^8*t^8.912 + t^8.996/(g1^12*g2^20) - (g1^3*g2*t^4.433)/y - (g1^19*g2*t^6.987)/y - (g1^23*g2^13*t^7.079)/y - (g1^9*g2^3*t^7.3)/y + (g1^11*g2^9*t^7.346)/y - t^7.521/(g1^5*g2^7*y) + t^7.567/(g1^3*g2*y) + t^7.788/(g1^17*g2^11*y) + (g2*t^7.879)/(g1^13*y) + (g1^36*g2^12*t^8.199)/y + (g1^20*t^8.375)/(g2^4*y) + (g1^22*g2^2*t^8.42)/y + (g1^24*g2^8*t^8.466)/y + (g1^26*g2^14*t^8.512)/y + (2*g1^8*t^8.641)/(g2^8*y) + (g1^10*t^8.687)/(g2^2*y) + (3*g1^12*g2^4*t^8.733)/y + (g1^16*g2^16*t^8.825)/y + (2*t^8.908)/(g1^4*g2^12*y) + (2*t^8.954)/(g1^2*g2^6*y) - g1^3*g2*t^4.433*y - g1^19*g2*t^6.987*y - g1^23*g2^13*t^7.079*y - g1^9*g2^3*t^7.3*y + g1^11*g2^9*t^7.346*y - (t^7.521*y)/(g1^5*g2^7) + (t^7.567*y)/(g1^3*g2) + (t^7.788*y)/(g1^17*g2^11) + (g2*t^7.879*y)/g1^13 + g1^36*g2^12*t^8.199*y + (g1^20*t^8.375*y)/g2^4 + g1^22*g2^2*t^8.42*y + g1^24*g2^8*t^8.466*y + g1^26*g2^14*t^8.512*y + (2*g1^8*t^8.641*y)/g2^8 + (g1^10*t^8.687*y)/g2^2 + 3*g1^12*g2^4*t^8.733*y + g1^16*g2^16*t^8.825*y + (2*t^8.908*y)/(g1^4*g2^12) + (2*t^8.954*y)/(g1^2*g2^6)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2549 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{3}M_{6}$ + ${ }M_{7}q_{1}\tilde{q}_{2}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ 0.6611 0.834 0.7927 [M:[1.0309, 0.8833, 1.1167, 0.7976, 1.2024, 0.8833, 0.7119], q:[0.5274, 0.4417], qb:[0.3559, 0.7607], phi:[0.4786]] t^2.136 + t^2.393 + 2*t^2.65 + t^2.871 + t^3.093 + t^3.571 + t^3.607 + t^3.829 + 2*t^4.086 + t^4.271 + t^4.343 + t^4.528 + t^4.6 + 3*t^4.786 + t^5.007 + 2*t^5.043 + t^5.228 + t^5.264 + 3*t^5.3 + 2*t^5.521 + t^5.707 + 2*t^5.743 + 3*t^5.964 - 2*t^6. - t^4.436/y - t^4.436*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
940 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{3}M_{6}$ 0.6987 0.854 0.8181 [M:[0.9091, 1.0303, 0.9697, 0.9697, 1.0303, 1.0303], q:[0.5758, 0.5152], qb:[0.4545, 0.5152], phi:[0.4848]] t^2.727 + 2*t^2.909 + 3*t^3.091 + t^3.273 + t^4.182 + 2*t^4.364 + 4*t^4.545 + 2*t^4.727 + t^4.909 + t^5.455 + t^5.636 + 2*t^5.818 + t^6. - t^4.455/y - t^4.455*y detail {a: 2029/2904, c: 310/363, M1: 10/11, M2: 34/33, M3: 32/33, M4: 32/33, M5: 34/33, M6: 34/33, q1: 19/33, q2: 17/33, qb1: 5/11, qb2: 17/33, phi1: 16/33}