Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
144 SU2adj1nf2 $\phi_1q_1^2$ + $ \phi_1q_2^2$ + $ M_1q_1\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ \phi_1^2X_1$ + $ M_2q_2\tilde{q}_1$ 0.4925 0.5698 0.8643 [X:[1.5254], M:[0.7119, 0.7119], q:[0.8813, 0.8813], qb:[0.4067, 0.8813], phi:[0.2373]] [X:[[4]], M:[[-6], [-6]], q:[[1], [1]], qb:[[5], [1]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_2$, $ \phi_1\tilde{q}_1^2$, $ \tilde{q}_1\tilde{q}_2$, $ M_1^2$, $ M_1M_2$, $ M_2^2$, $ X_1$, $ q_1q_2$, $ M_1\phi_1\tilde{q}_1^2$, $ M_2\phi_1\tilde{q}_1^2$, $ q_1\tilde{q}_2$, $ q_2\tilde{q}_2$ $M_1\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$ -2 2*t^2.14 + t^3.15 + t^3.86 + 3*t^4.27 + t^4.58 + 2*t^5.29 - 2*t^6. + t^6.3 + 4*t^6.41 - t^6.71 + t^7.02 + 3*t^7.42 + t^7.73 - 4*t^8.14 + 5*t^8.54 - 4*t^8.85 - (2*t^8.85)/y^2 - t^3.71/y - (2*t^5.85)/y + t^7.27/y + (2*t^7.58)/y - (3*t^7.98)/y + (2*t^8.29)/y - t^3.71*y - 2*t^5.85*y + t^7.27*y + 2*t^7.58*y - 3*t^7.98*y + 2*t^8.29*y - 2*t^8.85*y^2 (2*t^2.14)/g1^6 + g1^8*t^3.15 + g1^6*t^3.86 + (3*t^4.27)/g1^12 + g1^4*t^4.58 + 2*g1^2*t^5.29 - 2*t^6. + g1^16*t^6.3 + (4*t^6.41)/g1^18 - t^6.71/g1^2 + g1^14*t^7.02 + (3*t^7.42)/g1^4 + g1^12*t^7.73 - (4*t^8.14)/g1^6 + (5*t^8.54)/g1^24 - (4*t^8.85)/g1^8 - (2*t^8.85)/(g1^8*y^2) - t^3.71/(g1^2*y) - (2*t^5.85)/(g1^8*y) + t^7.27/(g1^12*y) + (2*g1^4*t^7.58)/y - (3*t^7.98)/(g1^14*y) + (2*g1^2*t^8.29)/y - (t^3.71*y)/g1^2 - (2*t^5.85*y)/g1^8 + (t^7.27*y)/g1^12 + 2*g1^4*t^7.58*y - (3*t^7.98*y)/g1^14 + 2*g1^2*t^8.29*y - (2*t^8.85*y^2)/g1^8


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
237 $\phi_1q_1^2$ + $ \phi_1q_2^2$ + $ M_1q_1\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ \phi_1^2X_1$ + $ M_2q_2\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ 0.5129 0.6085 0.8428 [X:[1.5308], M:[0.7038, 0.7038, 0.7038], q:[0.8827, 0.8827], qb:[0.4135, 0.8827], phi:[0.2346]] 3*t^2.11 + t^3.18 + 6*t^4.22 + t^4.59 + 3*t^5.3 - 4*t^6. - t^3.7/y - (3*t^5.82)/y - t^3.7*y - 3*t^5.82*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
7 SU2adj1nf1 $\phi_1^2X_1$ + $ M_1\phi_1q_1^2$ + $ M_2\phi_1\tilde{q}_1^2$ 0.4925 0.5698 0.8643 [X:[1.5254], M:[0.7119, 0.7119], q:[0.5254], qb:[0.5254], phi:[0.2373]] 2*t^2.14 + t^3.15 + t^3.86 + 3*t^4.27 + t^4.58 + 2*t^5.29 - 2*t^6. - t^3.71/y - (2*t^5.85)/y - t^3.71*y - 2*t^5.85*y detail


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
87 SU2adj1nf2 $\phi_1q_1^2$ + $ \phi_1q_2^2$ + $ M_1q_1\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ \phi_1^2X_1$ 0.4723 0.5327 0.8867 [X:[1.5173], M:[0.7241], q:[0.8793, 0.8793], qb:[0.3966, 0.8793], phi:[0.2414]] t^2.17 + t^3.1 + 2*t^3.83 + t^4.34 + t^4.55 + t^5.28 - 2*t^6. - t^3.72/y - t^5.9/y - t^3.72*y - t^5.9*y detail