Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
1437 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_5^2$ + $ M_6q_1\tilde{q}_2$ + $ M_3M_6$ + $ M_3M_7$ | 0.7181 | 0.8914 | 0.8055 | [X:[], M:[0.9573, 0.9431, 1.0996, 0.8008, 1.0, 0.9004, 0.9004], q:[0.4716, 0.5711], qb:[0.4289, 0.628], phi:[0.4751]] | [X:[], M:[[12, 4], [-8, -8], [-4, 4], [8, -8], [0, 0], [4, -4], [4, -4]], q:[[-4, -4], [-8, 0]], qb:[[8, 0], [0, 8]], phi:[[1, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_4$, $ M_6$, $ M_7$, $ M_2$, $ \phi_1^2$, $ M_1$, $ M_5$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1q_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_2$, $ M_4^2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_2$, $ M_4M_6$, $ M_4M_7$, $ \phi_1\tilde{q}_2^2$, $ M_2M_4$, $ M_4\phi_1^2$, $ M_1M_4$, $ M_4M_5$, $ M_6^2$, $ M_6M_7$, $ M_7^2$, $ M_2M_6$, $ M_2M_7$, $ M_6\phi_1^2$, $ M_7\phi_1^2$, $ M_1M_6$, $ M_1M_7$, $ M_2^2$, $ M_2\phi_1^2$, $ M_1M_2$, $ M_5M_6$, $ M_5M_7$, $ \phi_1^4$, $ M_1\phi_1^2$, $ M_1^2$, $ M_5\phi_1^2$ | . | -3 | t^2.4 + 2*t^2.7 + t^2.83 + t^2.85 + t^2.87 + t^3. + t^4. + t^4.13 + t^4.25 + t^4.43 + t^4.55 + t^4.6 + t^4.72 + t^4.81 + t^4.85 + t^5.02 + 2*t^5.1 + t^5.19 + t^5.23 + t^5.25 + t^5.27 + 3*t^5.4 + t^5.53 + 2*t^5.55 + t^5.57 + t^5.66 + t^5.68 + 3*t^5.7 + t^5.72 + t^5.74 + t^5.85 - 3*t^6. - t^6.13 - t^6.17 - 2*t^6.3 + t^6.4 - t^6.43 - t^6.47 + t^6.53 - t^6.6 + t^6.66 + 2*t^6.7 + 3*t^6.83 + t^6.85 + t^6.87 + 3*t^6.96 + t^6.98 + 2*t^7. + t^7.08 + t^7.11 + 3*t^7.13 - t^7.15 + t^7.21 + 3*t^7.25 + t^7.3 + t^7.38 + 2*t^7.43 + t^7.45 + t^7.47 + 2*t^7.51 + 2*t^7.55 + t^7.6 + t^7.63 + t^7.66 + 2*t^7.68 - t^7.75 + 3*t^7.81 + t^7.89 + t^7.93 + 2*t^7.95 + t^7.98 + t^8.04 + t^8.06 + t^8.07 + t^8.08 + 5*t^8.1 + 2*t^8.13 - t^8.17 + t^8.23 + 4*t^8.25 - t^8.32 - t^8.34 + t^8.36 + 2*t^8.38 + 2*t^8.42 + t^8.45 + t^8.49 + 2*t^8.51 + 4*t^8.55 + 2*t^8.59 + t^8.62 + t^8.68 - 7*t^8.7 + t^8.72 + t^8.8 + t^8.81 - 6*t^8.83 - t^8.85 - 5*t^8.87 + t^8.93 - t^8.96 + t^8.98 - t^4.43/y - t^6.83/y - t^7.13/y - t^7.25/y - t^7.28/y - t^7.3/y + t^7.55/y + t^7.57/y + t^7.6/y + t^7.72/y + t^8.02/y + (2*t^8.1)/y + t^8.23/y + t^8.25/y + t^8.27/y + (2*t^8.4)/y + (2*t^8.53)/y + (2*t^8.55)/y + (2*t^8.57)/y + t^8.68/y + (3*t^8.7)/y + t^8.72/y + t^8.83/y + t^8.85/y + t^8.87/y - t^4.43*y - t^6.83*y - t^7.13*y - t^7.25*y - t^7.28*y - t^7.3*y + t^7.55*y + t^7.57*y + t^7.6*y + t^7.72*y + t^8.02*y + 2*t^8.1*y + t^8.23*y + t^8.25*y + t^8.27*y + 2*t^8.4*y + 2*t^8.53*y + 2*t^8.55*y + 2*t^8.57*y + t^8.68*y + 3*t^8.7*y + t^8.72*y + t^8.83*y + t^8.85*y + t^8.87*y | (g1^8*t^2.4)/g2^8 + (2*g1^4*t^2.7)/g2^4 + t^2.83/(g1^8*g2^8) + (g1^2*t^2.85)/g2^2 + g1^12*g2^4*t^2.87 + t^3. + (g1^17*t^4.)/g2 + (g1^5*t^4.13)/g2^5 + t^4.25/(g1^7*g2^9) + (g1*t^4.43)/g2 + t^4.55/(g1^11*g2^5) + g1^9*g2^7*t^4.6 + (g2^3*t^4.72)/g1^3 + (g1^16*t^4.81)/g2^16 + t^4.85/(g1^15*g2) + (g2^7*t^5.02)/g1^7 + (2*g1^12*t^5.1)/g2^12 + g1*g2^15*t^5.19 + t^5.23/g2^16 + (g1^10*t^5.25)/g2^10 + (g1^20*t^5.27)/g2^4 + (3*g1^8*t^5.4)/g2^8 + t^5.53/(g1^4*g2^12) + (2*g1^6*t^5.55)/g2^6 + g1^16*t^5.57 + t^5.66/(g1^16*g2^16) + t^5.68/(g1^6*g2^10) + (3*g1^4*t^5.7)/g2^4 + g1^14*g2^2*t^5.72 + g1^24*g2^8*t^5.74 + (g1^2*t^5.85)/g2^2 - 3*t^6. - t^6.13/(g1^12*g2^4) - g1^8*g2^8*t^6.17 - (2*g2^4*t^6.3)/g1^4 + (g1^25*t^6.4)/g2^9 - t^6.43/g1^16 - g1^4*g2^12*t^6.47 + (g1^13*t^6.53)/g2^13 - (g2^8*t^6.6)/g1^8 + (g1*t^6.66)/g2^17 + (2*g1^21*t^6.7)/g2^5 + (3*g1^9*t^6.83)/g2^9 + (g1^19*t^6.85)/g2^3 + g1^29*g2^3*t^6.87 + (3*t^6.96)/(g1^3*g2^13) + (g1^7*t^6.98)/g2^7 + (2*g1^17*t^7.)/g2 + t^7.08/(g1^15*g2^17) + t^7.11/(g1^5*g2^11) + (3*g1^5*t^7.13)/g2^5 - g1^15*g2*t^7.15 + (g1^24*t^7.21)/g2^24 + (3*t^7.25)/(g1^7*g2^9) + g1^13*g2^3*t^7.3 + t^7.38/(g1^19*g2^13) + (2*g1*t^7.43)/g2 + g1^11*g2^5*t^7.45 + g1^21*g2^11*t^7.47 + (2*g1^20*t^7.51)/g2^20 + (2*t^7.55)/(g1^11*g2^5) + g1^9*g2^7*t^7.6 + (g1^8*t^7.63)/g2^24 + (g1^18*t^7.66)/g2^18 + (g1^28*t^7.68)/g2^12 + t^7.68/(g1^23*g2^9) - g1^7*g2^9*t^7.75 + (3*g1^16*t^7.81)/g2^16 + g1^5*g2^11*t^7.89 + (g1^4*t^7.93)/g2^20 + (2*g1^14*t^7.95)/g2^14 + (g1^24*t^7.98)/g2^8 + (g1^34*t^8.)/g2^2 - (g2*t^8.)/g1^17 + g1^3*g2^13*t^8.04 + t^8.06/(g1^8*g2^24) + g1^13*g2^19*t^8.07 + (g1^2*t^8.08)/g2^18 + (5*g1^12*t^8.1)/g2^12 + (2*g1^22*t^8.13)/g2^6 + g1^32*t^8.15 - (g2^3*t^8.15)/g1^19 - (g2^9*t^8.17)/g1^9 + t^8.23/g2^16 + (4*g1^10*t^8.25)/g2^10 - (g2^11*t^8.32)/g1^11 - (g2^17*t^8.34)/g1 + t^8.36/(g1^12*g2^20) + (2*t^8.38)/(g1^2*g2^14) + (2*g1^18*t^8.42)/g2^2 + g1^28*g2^4*t^8.45 + t^8.49/(g1^24*g2^24) + (2*t^8.51)/(g1^14*g2^18) + (4*g1^6*t^8.55)/g2^6 + 2*g1^26*g2^6*t^8.59 + g1^36*g2^12*t^8.62 + t^8.68/(g1^6*g2^10) - (7*g1^4*t^8.7)/g2^4 + g1^14*g2^2*t^8.72 + (g1^33*t^8.8)/g2^17 + t^8.81/(g1^18*g2^14) - (6*t^8.83)/(g1^8*g2^8) - (g1^2*t^8.85)/g2^2 - 5*g1^12*g2^4*t^8.87 + (g1^21*t^8.93)/g2^21 - t^8.96/(g1^20*g2^12) + t^8.98/(g1^10*g2^6) - (g1*t^4.43)/(g2*y) - (g1^9*t^6.83)/(g2^9*y) - (g1^5*t^7.13)/(g2^5*y) - t^7.25/(g1^7*g2^9*y) - (g1^3*t^7.28)/(g2^3*y) - (g1^13*g2^3*t^7.3)/y + t^7.55/(g1^11*g2^5*y) + (g2*t^7.57)/(g1*y) + (g1^9*g2^7*t^7.6)/y + (g2^3*t^7.72)/(g1^3*y) + (g2^7*t^8.02)/(g1^7*y) + (2*g1^12*t^8.1)/(g2^12*y) + t^8.23/(g2^16*y) + (g1^10*t^8.25)/(g2^10*y) + (g1^20*t^8.27)/(g2^4*y) + (2*g1^8*t^8.4)/(g2^8*y) + (2*t^8.53)/(g1^4*g2^12*y) + (2*g1^6*t^8.55)/(g2^6*y) + (2*g1^16*t^8.57)/y + t^8.68/(g1^6*g2^10*y) + (3*g1^4*t^8.7)/(g2^4*y) + (g1^14*g2^2*t^8.72)/y + t^8.83/(g1^8*g2^8*y) + (g1^2*t^8.85)/(g2^2*y) + (g1^12*g2^4*t^8.87)/y - (g1*t^4.43*y)/g2 - (g1^9*t^6.83*y)/g2^9 - (g1^5*t^7.13*y)/g2^5 - (t^7.25*y)/(g1^7*g2^9) - (g1^3*t^7.28*y)/g2^3 - g1^13*g2^3*t^7.3*y + (t^7.55*y)/(g1^11*g2^5) + (g2*t^7.57*y)/g1 + g1^9*g2^7*t^7.6*y + (g2^3*t^7.72*y)/g1^3 + (g2^7*t^8.02*y)/g1^7 + (2*g1^12*t^8.1*y)/g2^12 + (t^8.23*y)/g2^16 + (g1^10*t^8.25*y)/g2^10 + (g1^20*t^8.27*y)/g2^4 + (2*g1^8*t^8.4*y)/g2^8 + (2*t^8.53*y)/(g1^4*g2^12) + (2*g1^6*t^8.55*y)/g2^6 + 2*g1^16*t^8.57*y + (t^8.68*y)/(g1^6*g2^10) + (3*g1^4*t^8.7*y)/g2^4 + g1^14*g2^2*t^8.72*y + (t^8.83*y)/(g1^8*g2^8) + (g1^2*t^8.85*y)/g2^2 + g1^12*g2^4*t^8.87*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
936 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_5^2$ + $ M_6q_1\tilde{q}_2$ + $ M_3M_6$ | 0.7097 | 0.8751 | 0.811 | [X:[], M:[0.9631, 0.953, 1.0839, 0.8322, 1.0, 0.9161], q:[0.4765, 0.5604], qb:[0.4396, 0.6074], phi:[0.479]] | t^2.5 + t^2.75 + t^2.86 + t^2.87 + t^2.89 + t^3. + t^3.25 + t^4.07 + t^4.19 + t^4.3 + t^4.44 + t^4.55 + t^4.58 + t^4.69 + t^4.8 + t^4.94 + t^4.99 + t^5.08 + t^5.25 + t^5.36 + t^5.37 + t^5.39 + t^5.5 + t^5.62 + t^5.72 + t^5.73 + 3*t^5.75 + t^5.76 + t^5.78 + t^5.87 - 2*t^6. - t^4.44/y - t^4.44*y | detail |