Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
1433 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_5^2$ + $ M_1\phi_1^2$ + $ M_1M_6$ + $ M_7q_1\tilde{q}_2$ | 0.73 | 0.9083 | 0.8037 | [X:[], M:[1.0785, 0.7646, 0.933, 0.9101, 1.0, 0.9215, 0.8431], q:[0.4943, 0.4272], qb:[0.5728, 0.6626], phi:[0.4608]] | [X:[], M:[[2, 2], [-6, -6], [-10, 2], [6, -6], [0, 0], [-2, -2], [-4, -4]], q:[[4, -2], [-6, 0]], qb:[[6, 0], [0, 6]], phi:[[-1, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_2$, $ M_7$, $ M_4$, $ M_6$, $ \phi_1^2$, $ M_3$, $ M_5$, $ \phi_1q_2^2$, $ \phi_1q_1q_2$, $ \phi_1q_1^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_1$, $ M_2^2$, $ \phi_1q_2\tilde{q}_2$, $ M_2M_7$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1\tilde{q}_2$, $ M_2M_4$, $ M_2M_6$, $ M_7^2$, $ M_2\phi_1^2$, $ M_2M_3$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_4M_7$, $ M_2M_5$, $ M_6M_7$, $ M_7\phi_1^2$, $ M_3M_7$, $ \phi_1\tilde{q}_2^2$, $ M_4^2$, $ M_4M_6$, $ M_4\phi_1^2$, $ M_3M_4$, $ M_6^2$, $ M_5M_7$, $ M_6\phi_1^2$, $ \phi_1^4$, $ M_3M_6$, $ M_3\phi_1^2$, $ M_3^2$, $ M_5M_6$, $ M_5\phi_1^2$ | . | -3 | t^2.29 + t^2.53 + t^2.73 + 2*t^2.76 + t^2.8 + t^3. + t^3.95 + t^4.15 + t^4.35 + t^4.38 + t^4.58 + t^4.59 + t^4.65 + 2*t^4.82 + t^4.85 + t^5.02 + 3*t^5.06 + 2*t^5.09 + t^5.26 + 2*t^5.29 + t^5.33 + t^5.36 + t^5.46 + t^5.49 + 5*t^5.53 + t^5.56 + t^5.6 + t^5.76 - 3*t^6. - t^6.2 - t^6.27 - t^6.51 + t^6.64 + 2*t^6.68 + t^6.71 + t^6.74 + 3*t^6.88 + 3*t^6.91 + 2*t^6.95 + t^7.08 + 4*t^7.11 + t^7.12 + 3*t^7.15 + t^7.31 + t^7.32 + 6*t^7.35 + t^7.38 + t^7.39 + t^7.42 + t^7.45 + 2*t^7.55 + t^7.58 + 3*t^7.59 + 2*t^7.62 + t^7.65 + t^7.75 + 2*t^7.79 + 6*t^7.82 + 2*t^7.86 + 2*t^7.89 + t^7.99 + t^8.02 - 2*t^8.05 + 4*t^8.06 + t^8.12 + t^8.13 + t^8.16 + t^8.19 + t^8.23 + 2*t^8.26 + 2*t^8.29 - t^8.32 + 3*t^8.33 + t^8.36 + t^8.4 - t^8.49 - t^8.53 - 3*t^8.56 - t^8.59 + t^8.6 + t^8.7 - 3*t^8.73 - 7*t^8.76 + t^8.77 - 4*t^8.8 + t^8.94 - t^8.97 - t^4.38/y - t^6.68/y - t^6.91/y - t^7.11/y - t^7.15/y - t^7.18/y + t^7.58/y + t^7.62/y + t^7.65/y + t^7.82/y + t^7.85/y + t^8.02/y + (2*t^8.06)/y + (2*t^8.09)/y + t^8.26/y + (3*t^8.29)/y + t^8.33/y + (2*t^8.49)/y + (3*t^8.53)/y + (2*t^8.56)/y + t^8.73/y + (2*t^8.76)/y + t^8.8/y - t^8.97/y - t^4.38*y - t^6.68*y - t^6.91*y - t^7.11*y - t^7.15*y - t^7.18*y + t^7.58*y + t^7.62*y + t^7.65*y + t^7.82*y + t^7.85*y + t^8.02*y + 2*t^8.06*y + 2*t^8.09*y + t^8.26*y + 3*t^8.29*y + t^8.33*y + 2*t^8.49*y + 3*t^8.53*y + 2*t^8.56*y + t^8.73*y + 2*t^8.76*y + t^8.8*y - t^8.97*y | t^2.29/(g1^6*g2^6) + t^2.53/(g1^4*g2^4) + (g1^6*t^2.73)/g2^6 + (2*t^2.76)/(g1^2*g2^2) + (g2^2*t^2.8)/g1^10 + t^3. + t^3.95/(g1^13*g2) + t^4.15/(g1^3*g2^3) + (g1^7*t^4.35)/g2^5 + t^4.38/(g1*g2) + (g1^9*t^4.58)/g2^3 + t^4.59/(g1^12*g2^12) + (g2^5*t^4.65)/g1^7 + t^4.82/(g1^10*g2^10) + (g1^11*t^4.82)/g2 + g1^3*g2^3*t^4.85 + t^5.02/g2^12 + (3*t^5.06)/(g1^8*g2^8) + t^5.09/(g1^16*g2^4) + g1^5*g2^5*t^5.09 + (g1^2*t^5.26)/g2^10 + (2*t^5.29)/(g1^6*g2^6) + t^5.33/(g1^14*g2^2) + (g2^11*t^5.36)/g1 + (g1^12*t^5.46)/g2^12 + (g1^4*t^5.49)/g2^8 + (5*t^5.53)/(g1^4*g2^4) + t^5.56/g1^12 + (g2^4*t^5.6)/g1^20 + t^5.76/(g1^2*g2^2) - 3*t^6. - (g1^10*t^6.2)/g2^2 + t^6.24/(g1^19*g2^7) - g1^2*g2^2*t^6.24 - (g2^6*t^6.27)/g1^6 - g1^12*t^6.44 + t^6.44/(g1^9*g2^9) + t^6.47/(g1^17*g2^5) - g1^4*g2^4*t^6.47 - (g2^8*t^6.51)/g1^4 + (g1*t^6.64)/g2^11 + (2*t^6.68)/(g1^7*g2^7) + (2*t^6.71)/(g1^15*g2^3) - g1^6*g2^6*t^6.71 + (g2*t^6.74)/g1^23 + t^6.88/(g1^18*g2^18) + (2*g1^3*t^6.88)/g2^9 + (3*t^6.91)/(g1^5*g2^5) + (2*t^6.95)/(g1^13*g2) + (g1^13*t^7.08)/g2^11 + (4*g1^5*t^7.11)/g2^7 + t^7.12/(g1^16*g2^16) + (3*t^7.15)/(g1^3*g2^3) + (g1^15*t^7.31)/g2^9 + t^7.32/(g1^6*g2^18) + (3*t^7.35)/(g1^14*g2^14) + (3*g1^7*t^7.35)/g2^5 + t^7.38/(g1*g2) + t^7.39/(g1^22*g2^10) + (g2^3*t^7.42)/g1^9 + (g2^7*t^7.45)/g1^17 + t^7.55/(g1^4*g2^16) + (g1^17*t^7.55)/g2^7 + (g1^9*t^7.58)/g2^3 + (3*t^7.59)/(g1^12*g2^12) + t^7.62/(g1^20*g2^8) + g1*g2*t^7.62 + (g2^5*t^7.65)/g1^7 + (g1^6*t^7.75)/g2^18 + (2*t^7.79)/(g1^2*g2^14) + (6*t^7.82)/(g1^10*g2^10) + (2*t^7.86)/(g1^18*g2^6) + (2*t^7.89)/(g1^26*g2^2) + (g1^8*t^7.99)/g2^16 + t^8.02/g2^12 - 2*g1^13*g2*t^8.05 + (4*t^8.06)/(g1^8*g2^8) + t^8.09/(g1^16*g2^4) - g1^5*g2^5*t^8.09 + (g2^9*t^8.12)/g1^3 + t^8.13/g1^24 + (g2^13*t^8.16)/g1^11 + (g1^18*t^8.19)/g2^18 + (g1^10*t^8.23)/g2^14 + (2*g1^2*t^8.26)/g2^10 + (3*t^8.29)/(g1^6*g2^6) - g1^15*g2^3*t^8.29 - g1^7*g2^7*t^8.32 + (3*t^8.33)/(g1^14*g2^2) + (g2^2*t^8.36)/g1^22 + (g2^6*t^8.4)/g1^30 - (g1^4*t^8.49)/g2^8 + t^8.53/(g1^25*g2^13) - (2*t^8.53)/(g1^4*g2^4) - (2*t^8.56)/g1^12 - g1^9*g2^9*t^8.56 - g1*g2^13*t^8.59 + (g2^4*t^8.6)/g1^20 + (g1^14*t^8.7)/g2^10 + t^8.73/(g1^15*g2^15) - (4*g1^6*t^8.73)/g2^6 - (7*t^8.76)/(g1^2*g2^2) + t^8.77/(g1^23*g2^11) - (4*g2^2*t^8.8)/g1^10 + t^8.94/(g1^5*g2^17) + (2*t^8.97)/(g1^13*g2^13) - (3*g1^8*t^8.97)/g2^4 - t^4.38/(g1*g2*y) - t^6.68/(g1^7*g2^7*y) - t^6.91/(g1^5*g2^5*y) - (g1^5*t^7.11)/(g2^7*y) - t^7.15/(g1^3*g2^3*y) - (g2*t^7.18)/(g1^11*y) + (g1^9*t^7.58)/(g2^3*y) + (g1*g2*t^7.62)/y + (g2^5*t^7.65)/(g1^7*y) + t^7.82/(g1^10*g2^10*y) + (g1^3*g2^3*t^7.85)/y + t^8.02/(g2^12*y) + (2*t^8.06)/(g1^8*g2^8*y) + t^8.09/(g1^16*g2^4*y) + (g1^5*g2^5*t^8.09)/y + (g1^2*t^8.26)/(g2^10*y) + (3*t^8.29)/(g1^6*g2^6*y) + t^8.33/(g1^14*g2^2*y) + (2*g1^4*t^8.49)/(g2^8*y) + (3*t^8.53)/(g1^4*g2^4*y) + (2*t^8.56)/(g1^12*y) + (g1^6*t^8.73)/(g2^6*y) + (2*t^8.76)/(g1^2*g2^2*y) + (g2^2*t^8.8)/(g1^10*y) - t^8.97/(g1^13*g2^13*y) - (t^4.38*y)/(g1*g2) - (t^6.68*y)/(g1^7*g2^7) - (t^6.91*y)/(g1^5*g2^5) - (g1^5*t^7.11*y)/g2^7 - (t^7.15*y)/(g1^3*g2^3) - (g2*t^7.18*y)/g1^11 + (g1^9*t^7.58*y)/g2^3 + g1*g2*t^7.62*y + (g2^5*t^7.65*y)/g1^7 + (t^7.82*y)/(g1^10*g2^10) + g1^3*g2^3*t^7.85*y + (t^8.02*y)/g2^12 + (2*t^8.06*y)/(g1^8*g2^8) + (t^8.09*y)/(g1^16*g2^4) + g1^5*g2^5*t^8.09*y + (g1^2*t^8.26*y)/g2^10 + (3*t^8.29*y)/(g1^6*g2^6) + (t^8.33*y)/(g1^14*g2^2) + (2*g1^4*t^8.49*y)/g2^8 + (3*t^8.53*y)/(g1^4*g2^4) + (2*t^8.56*y)/g1^12 + (g1^6*t^8.73*y)/g2^6 + (2*t^8.76*y)/(g1^2*g2^2) + (g2^2*t^8.8*y)/g1^10 - (t^8.97*y)/(g1^13*g2^13) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
934 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_5^2$ + $ M_1\phi_1^2$ + $ M_1M_6$ | 0.7172 | 0.8839 | 0.8115 | [X:[], M:[1.0665, 0.8005, 0.9418, 0.9252, 1.0, 0.9335], q:[0.4959, 0.4376], qb:[0.5624, 0.6372], phi:[0.4667]] | t^2.4 + t^2.78 + 2*t^2.8 + t^2.83 + t^3. + t^3.4 + t^4.03 + t^4.2 + t^4.38 + t^4.4 + t^4.57 + t^4.62 + t^4.77 + 2*t^4.8 + t^5. + t^5.18 + 2*t^5.2 + t^5.22 + t^5.23 + t^5.55 + t^5.58 + 4*t^5.6 + t^5.63 + t^5.65 + 2*t^5.8 - 3*t^6. - t^4.4/y - t^4.4*y | detail |