Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1430 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_5^2$ + $ M_1M_3$ + $ M_6q_1\tilde{q}_2$ + $ M_1M_7$ 0.7389 0.9195 0.8035 [X:[], M:[1.0228, 0.767, 0.9772, 0.8127, 1.0, 0.7899, 0.9772], q:[0.5, 0.4772], qb:[0.5228, 0.7101], phi:[0.4475]] [X:[], M:[[1, 0], [-1, -4], [-1, 0], [1, -4], [0, 0], [0, -4], [-1, 0]], q:[[0, 0], [-1, 0]], qb:[[1, 0], [0, 4]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_6$, $ M_4$, $ \phi_1^2$, $ M_3$, $ M_7$, $ M_5$, $ \phi_1q_2^2$, $ \phi_1q_1q_2$, $ \phi_1q_1^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ M_2^2$, $ M_2M_6$, $ M_2M_4$, $ M_6^2$, $ M_4M_6$, $ M_4^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_1\tilde{q}_2$, $ M_2\phi_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_6\phi_1^2$, $ M_4\phi_1^2$, $ M_2M_3$, $ M_2M_7$, $ M_2M_5$, $ M_3M_6$, $ M_6M_7$, $ M_3M_4$, $ M_5M_6$, $ M_4M_7$, $ \phi_1^4$, $ \phi_1\tilde{q}_2^2$, $ M_3\phi_1^2$, $ M_7\phi_1^2$, $ M_5\phi_1^2$, $ M_3^2$, $ M_3M_7$, $ M_7^2$ . -3 t^2.3 + t^2.37 + t^2.44 + t^2.68 + 2*t^2.93 + t^3. + t^4.21 + t^4.27 + 2*t^4.34 + t^4.41 + t^4.48 + t^4.6 + t^4.67 + 2*t^4.74 + t^4.81 + t^4.88 + t^4.9 + t^4.97 + t^4.99 + t^5.04 + t^5.05 + t^5.12 + 2*t^5.23 + 2*t^5.3 + 3*t^5.37 + t^5.6 + 2*t^5.62 + t^5.68 + 2*t^5.86 - 3*t^6. - 2*t^6.07 - t^6.14 + t^6.51 - t^6.56 + 2*t^6.57 - 2*t^6.63 + 3*t^6.64 - t^6.7 + 3*t^6.71 + 3*t^6.78 + 2*t^6.85 + t^6.89 + t^6.9 + t^6.92 + t^6.96 + t^6.97 + 2*t^7.03 + 2*t^7.04 + t^7.1 + 2*t^7.11 + 2*t^7.14 + t^7.16 + 2*t^7.18 + 3*t^7.21 + t^7.25 + 4*t^7.27 + t^7.29 + t^7.31 + 3*t^7.34 + t^7.36 + 2*t^7.41 + 2*t^7.42 + t^7.48 + t^7.49 - t^7.52 + 2*t^7.53 + t^7.56 + 2*t^7.6 - t^7.66 + 4*t^7.67 + 3*t^7.74 - t^7.79 + 2*t^7.81 + t^7.84 + t^7.9 + 2*t^7.92 + 2*t^7.99 - t^8.04 + 3*t^8.05 - t^8.11 + 2*t^8.16 - t^8.22 - t^8.3 - t^8.36 - 5*t^8.37 + t^8.41 - 6*t^8.44 + t^8.48 - 3*t^8.51 + t^8.53 + 4*t^8.55 - t^8.58 + 2*t^8.62 - t^8.67 + 2*t^8.79 + t^8.81 + t^8.82 - 2*t^8.86 + 2*t^8.88 + t^8.89 - t^8.92 - 9*t^8.93 + 4*t^8.94 + t^8.96 - t^4.34/y - t^6.64/y - t^6.71/y - t^6.78/y - t^7.03/y - t^7.27/y + t^7.41/y + t^7.66/y + t^7.67/y + t^7.74/y + t^7.81/y + t^7.9/y + t^7.97/y + t^7.99/y + t^8.04/y + t^8.05/y + t^8.12/y + (2*t^8.23)/y + (3*t^8.3)/y + (3*t^8.37)/y + t^8.44/y + (2*t^8.62)/y + t^8.68/y + t^8.86/y + (2*t^8.93)/y - t^8.94/y - t^4.34*y - t^6.64*y - t^6.71*y - t^6.78*y - t^7.03*y - t^7.27*y + t^7.41*y + t^7.66*y + t^7.67*y + t^7.74*y + t^7.81*y + t^7.9*y + t^7.97*y + t^7.99*y + t^8.04*y + t^8.05*y + t^8.12*y + 2*t^8.23*y + 3*t^8.3*y + 3*t^8.37*y + t^8.44*y + 2*t^8.62*y + t^8.68*y + t^8.86*y + 2*t^8.93*y - t^8.94*y t^2.3/(g1*g2^4) + t^2.37/g2^4 + (g1*t^2.44)/g2^4 + t^2.68/g2^2 + (2*t^2.93)/g1 + t^3. + t^4.21/(g1^2*g2) + t^4.27/(g1*g2) + (2*t^4.34)/g2 + (g1*t^4.41)/g2 + (g1^2*t^4.48)/g2 + t^4.6/(g1^2*g2^8) + t^4.67/(g1*g2^8) + (2*t^4.74)/g2^8 + (g1*t^4.81)/g2^8 + (g1^2*t^4.88)/g2^8 + (g2^3*t^4.9)/g1 + g2^3*t^4.97 + t^4.99/(g1*g2^6) + g1*g2^3*t^5.04 + t^5.05/g2^6 + (g1*t^5.12)/g2^6 + (2*t^5.23)/(g1^2*g2^4) + (2*t^5.3)/(g1*g2^4) + (3*t^5.37)/g2^4 + g2^7*t^5.6 + (2*t^5.62)/(g1*g2^2) + t^5.68/g2^2 + (2*t^5.86)/g1^2 - 3*t^6. - 2*g1*t^6.07 - g1^2*t^6.14 + t^6.51/(g1^3*g2^5) - (g2^4*t^6.56)/g1 + (2*t^6.57)/(g1^2*g2^5) - 2*g2^4*t^6.63 + (3*t^6.64)/(g1*g2^5) - g1*g2^4*t^6.7 + (3*t^6.71)/g2^5 + (3*g1*t^6.78)/g2^5 + (2*g1^2*t^6.85)/g2^5 + t^6.89/(g1^2*g2^3) + t^6.9/(g1^3*g2^12) + (g1^3*t^6.92)/g2^5 + t^6.96/(g1*g2^3) + t^6.97/(g1^2*g2^12) + (2*t^7.03)/g2^3 + (2*t^7.04)/(g1*g2^12) + (g1*t^7.1)/g2^3 + (2*t^7.11)/g2^12 + (2*t^7.14)/(g1^3*g2) + (g1^2*t^7.16)/g2^3 + (2*g1*t^7.18)/g2^12 + (3*t^7.21)/(g1^2*g2) + (g1^2*t^7.25)/g2^12 + (4*t^7.27)/(g1*g2) + t^7.29/(g1^2*g2^10) + (g1^3*t^7.31)/g2^12 + (3*t^7.34)/g2 + t^7.36/(g1*g2^10) + (2*g1*t^7.41)/g2 + (2*t^7.42)/g2^10 + (g1^2*t^7.48)/g2 + (g1*t^7.49)/g2^10 - (g2*t^7.52)/g1^2 + (2*t^7.53)/(g1^3*g2^8) + (g1^2*t^7.56)/g2^10 + (2*t^7.6)/(g1^2*g2^8) - g2*t^7.66 + (4*t^7.67)/(g1*g2^8) + (3*t^7.74)/g2^8 - g1^2*g2*t^7.79 + (2*g1*t^7.81)/g2^8 + (g2^3*t^7.84)/g1^2 + (g2^3*t^7.9)/g1 + (2*t^7.92)/(g1^2*g2^6) + (2*t^7.99)/(g1*g2^6) - g1*g2^3*t^8.04 + (3*t^8.05)/g2^6 - g1^2*g2^3*t^8.11 + (2*t^8.16)/(g1^3*g2^4) - (g2^5*t^8.22)/g1 - t^8.3/(g1*g2^4) - g1*g2^5*t^8.36 - (5*t^8.37)/g2^4 + t^8.41/(g1^4*g2^2) - (6*g1*t^8.44)/g2^4 + t^8.48/(g1^3*g2^2) - (3*g1^2*t^8.51)/g2^4 + (g2^7*t^8.53)/g1 + (4*t^8.55)/(g1^2*g2^2) - (g1^3*t^8.58)/g2^4 + (2*t^8.62)/(g1*g2^2) - g1*g2^7*t^8.67 + (2*t^8.79)/g1^3 + t^8.81/(g1^4*g2^9) + (g1^2*t^8.82)/g2^2 - (2*t^8.86)/g1^2 + (2*t^8.88)/(g1^3*g2^9) + (g1^3*t^8.89)/g2^2 - g2^9*t^8.92 - (9*t^8.93)/g1 + (4*t^8.94)/(g1^2*g2^9) + (g1^4*t^8.96)/g2^2 - t^4.34/(g2*y) - t^6.64/(g1*g2^5*y) - t^6.71/(g2^5*y) - (g1*t^6.78)/(g2^5*y) - t^7.03/(g2^3*y) - t^7.27/(g1*g2*y) + (g1*t^7.41)/(g2*y) + (g2*t^7.66)/y + t^7.67/(g1*g2^8*y) + t^7.74/(g2^8*y) + (g1*t^7.81)/(g2^8*y) + (g2^3*t^7.9)/(g1*y) + (g2^3*t^7.97)/y + t^7.99/(g1*g2^6*y) + (g1*g2^3*t^8.04)/y + t^8.05/(g2^6*y) + (g1*t^8.12)/(g2^6*y) + (2*t^8.23)/(g1^2*g2^4*y) + (3*t^8.3)/(g1*g2^4*y) + (3*t^8.37)/(g2^4*y) + (g1*t^8.44)/(g2^4*y) + (2*t^8.62)/(g1*g2^2*y) + t^8.68/(g2^2*y) + t^8.86/(g1^2*y) + (2*t^8.93)/(g1*y) - t^8.94/(g1^2*g2^9*y) - (t^4.34*y)/g2 - (t^6.64*y)/(g1*g2^5) - (t^6.71*y)/g2^5 - (g1*t^6.78*y)/g2^5 - (t^7.03*y)/g2^3 - (t^7.27*y)/(g1*g2) + (g1*t^7.41*y)/g2 + g2*t^7.66*y + (t^7.67*y)/(g1*g2^8) + (t^7.74*y)/g2^8 + (g1*t^7.81*y)/g2^8 + (g2^3*t^7.9*y)/g1 + g2^3*t^7.97*y + (t^7.99*y)/(g1*g2^6) + g1*g2^3*t^8.04*y + (t^8.05*y)/g2^6 + (g1*t^8.12*y)/g2^6 + (2*t^8.23*y)/(g1^2*g2^4) + (3*t^8.3*y)/(g1*g2^4) + (3*t^8.37*y)/g2^4 + (g1*t^8.44*y)/g2^4 + (2*t^8.62*y)/(g1*g2^2) + (t^8.68*y)/g2^2 + (t^8.86*y)/g1^2 + (2*t^8.93*y)/g1 - (t^8.94*y)/(g1^2*g2^9)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
932 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_5^2$ + $ M_1M_3$ + $ M_6q_1\tilde{q}_2$ 0.7378 0.9171 0.8045 [X:[], M:[1.0, 0.7895, 1.0, 0.7895, 1.0, 0.7895], q:[0.5, 0.5], qb:[0.5, 0.7105], phi:[0.4474]] 3*t^2.37 + t^2.68 + 3*t^3. + 6*t^4.34 + 6*t^4.74 + 3*t^4.97 + 3*t^5.05 + 7*t^5.37 + t^5.61 + 3*t^5.68 - 4*t^6. - t^4.34/y - t^4.34*y detail