Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1430 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{7}$ 0.7389 0.9195 0.8035 [M:[1.0228, 0.767, 0.9772, 0.8127, 1.0, 0.7899, 0.9772], q:[0.5, 0.4772], qb:[0.5228, 0.7101], phi:[0.4475]] [M:[[1, 0], [-1, -4], [-1, 0], [1, -4], [0, 0], [0, -4], [-1, 0]], q:[[0, 0], [-1, 0]], qb:[[1, 0], [0, 4]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{6}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }M_{7}$, ${ }M_{5}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{2}M_{4}$, ${ }M_{6}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}M_{7}$, ${ }M_{2}M_{5}$, ${ }M_{3}M_{6}$, ${ }M_{6}M_{7}$, ${ }M_{3}M_{4}$, ${ }M_{5}M_{6}$, ${ }M_{4}M_{7}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{7}$, ${ }M_{7}^{2}$ ${}$ -3 t^2.301 + t^2.37 + t^2.438 + t^2.685 + 2*t^2.931 + t^3. + t^4.205 + t^4.274 + 2*t^4.342 + t^4.411 + t^4.479 + t^4.602 + t^4.671 + 2*t^4.739 + t^4.808 + t^4.876 + t^4.904 + t^4.973 + t^4.986 + t^5.041 + t^5.054 + t^5.123 + 2*t^5.233 + 2*t^5.301 + 3*t^5.37 + t^5.603 + 2*t^5.616 + t^5.685 + 2*t^5.863 - 3*t^6. - 2*t^6.069 - t^6.137 + t^6.506 - t^6.562 + 2*t^6.575 - 2*t^6.63 + 3*t^6.643 - t^6.699 + 3*t^6.712 + 3*t^6.781 + 2*t^6.849 + t^6.89 + t^6.903 + t^6.918 + t^6.959 + t^6.972 + 2*t^7.027 + 2*t^7.04 + t^7.096 + 2*t^7.109 + 2*t^7.137 + t^7.164 + 2*t^7.177 + 3*t^7.205 + t^7.246 + 4*t^7.274 + t^7.287 + t^7.314 + 3*t^7.342 + t^7.355 + 2*t^7.411 + 2*t^7.424 + t^7.479 + t^7.493 - t^7.521 + 2*t^7.534 + t^7.561 + 2*t^7.602 - t^7.658 + 4*t^7.671 + 3*t^7.739 - t^7.795 + 2*t^7.808 + t^7.836 + t^7.904 + 2*t^7.917 + 2*t^7.986 - t^8.041 + 3*t^8.054 - t^8.11 + 2*t^8.164 - t^8.219 - t^8.301 - t^8.357 - 5*t^8.37 + t^8.411 - 6*t^8.438 + t^8.479 - 3*t^8.507 + t^8.535 + 4*t^8.548 - t^8.575 + 2*t^8.616 - t^8.672 + 2*t^8.794 + t^8.807 + t^8.822 - 2*t^8.863 + 2*t^8.876 + t^8.89 - t^8.918 - 9*t^8.931 + 4*t^8.945 + t^8.959 - t^4.342/y - t^6.643/y - t^6.712/y - t^6.781/y - t^7.027/y - t^7.274/y + t^7.411/y + t^7.658/y + t^7.671/y + t^7.739/y + t^7.808/y + t^7.904/y + t^7.973/y + t^7.986/y + t^8.041/y + t^8.054/y + t^8.123/y + (2*t^8.233)/y + (3*t^8.301)/y + (3*t^8.37)/y + t^8.438/y + (2*t^8.616)/y + t^8.685/y + t^8.863/y + (2*t^8.931)/y - t^8.945/y - t^4.342*y - t^6.643*y - t^6.712*y - t^6.781*y - t^7.027*y - t^7.274*y + t^7.411*y + t^7.658*y + t^7.671*y + t^7.739*y + t^7.808*y + t^7.904*y + t^7.973*y + t^7.986*y + t^8.041*y + t^8.054*y + t^8.123*y + 2*t^8.233*y + 3*t^8.301*y + 3*t^8.37*y + t^8.438*y + 2*t^8.616*y + t^8.685*y + t^8.863*y + 2*t^8.931*y - t^8.945*y t^2.301/(g1*g2^4) + t^2.37/g2^4 + (g1*t^2.438)/g2^4 + t^2.685/g2^2 + (2*t^2.931)/g1 + t^3. + t^4.205/(g1^2*g2) + t^4.274/(g1*g2) + (2*t^4.342)/g2 + (g1*t^4.411)/g2 + (g1^2*t^4.479)/g2 + t^4.602/(g1^2*g2^8) + t^4.671/(g1*g2^8) + (2*t^4.739)/g2^8 + (g1*t^4.808)/g2^8 + (g1^2*t^4.876)/g2^8 + (g2^3*t^4.904)/g1 + g2^3*t^4.973 + t^4.986/(g1*g2^6) + g1*g2^3*t^5.041 + t^5.054/g2^6 + (g1*t^5.123)/g2^6 + (2*t^5.233)/(g1^2*g2^4) + (2*t^5.301)/(g1*g2^4) + (3*t^5.37)/g2^4 + g2^7*t^5.603 + (2*t^5.616)/(g1*g2^2) + t^5.685/g2^2 + (2*t^5.863)/g1^2 - 3*t^6. - 2*g1*t^6.069 - g1^2*t^6.137 + t^6.506/(g1^3*g2^5) - (g2^4*t^6.562)/g1 + (2*t^6.575)/(g1^2*g2^5) - 2*g2^4*t^6.63 + (3*t^6.643)/(g1*g2^5) - g1*g2^4*t^6.699 + (3*t^6.712)/g2^5 + (3*g1*t^6.781)/g2^5 + (2*g1^2*t^6.849)/g2^5 + t^6.89/(g1^2*g2^3) + t^6.903/(g1^3*g2^12) + (g1^3*t^6.918)/g2^5 + t^6.959/(g1*g2^3) + t^6.972/(g1^2*g2^12) + (2*t^7.027)/g2^3 + (2*t^7.04)/(g1*g2^12) + (g1*t^7.096)/g2^3 + (2*t^7.109)/g2^12 + (2*t^7.137)/(g1^3*g2) + (g1^2*t^7.164)/g2^3 + (2*g1*t^7.177)/g2^12 + (3*t^7.205)/(g1^2*g2) + (g1^2*t^7.246)/g2^12 + (4*t^7.274)/(g1*g2) + t^7.287/(g1^2*g2^10) + (g1^3*t^7.314)/g2^12 + (3*t^7.342)/g2 + t^7.355/(g1*g2^10) + (2*g1*t^7.411)/g2 + (2*t^7.424)/g2^10 + (g1^2*t^7.479)/g2 + (g1*t^7.493)/g2^10 - (g2*t^7.521)/g1^2 + (2*t^7.534)/(g1^3*g2^8) + (g1^2*t^7.561)/g2^10 + (2*t^7.602)/(g1^2*g2^8) - g2*t^7.658 + (4*t^7.671)/(g1*g2^8) + (3*t^7.739)/g2^8 - g1^2*g2*t^7.795 + (2*g1*t^7.808)/g2^8 + (g2^3*t^7.836)/g1^2 + (g2^3*t^7.904)/g1 + (2*t^7.917)/(g1^2*g2^6) + (2*t^7.986)/(g1*g2^6) - g1*g2^3*t^8.041 + (3*t^8.054)/g2^6 - g1^2*g2^3*t^8.11 + (2*t^8.164)/(g1^3*g2^4) - (g2^5*t^8.219)/g1 - t^8.301/(g1*g2^4) - g1*g2^5*t^8.357 - (5*t^8.37)/g2^4 + t^8.411/(g1^4*g2^2) - (6*g1*t^8.438)/g2^4 + t^8.479/(g1^3*g2^2) - (3*g1^2*t^8.507)/g2^4 + (g2^7*t^8.535)/g1 + (4*t^8.548)/(g1^2*g2^2) - (g1^3*t^8.575)/g2^4 + (2*t^8.616)/(g1*g2^2) - g1*g2^7*t^8.672 + (2*t^8.794)/g1^3 + t^8.807/(g1^4*g2^9) + (g1^2*t^8.822)/g2^2 - (2*t^8.863)/g1^2 + (2*t^8.876)/(g1^3*g2^9) + (g1^3*t^8.89)/g2^2 - g2^9*t^8.918 - (9*t^8.931)/g1 + (4*t^8.945)/(g1^2*g2^9) + (g1^4*t^8.959)/g2^2 - t^4.342/(g2*y) - t^6.643/(g1*g2^5*y) - t^6.712/(g2^5*y) - (g1*t^6.781)/(g2^5*y) - t^7.027/(g2^3*y) - t^7.274/(g1*g2*y) + (g1*t^7.411)/(g2*y) + (g2*t^7.658)/y + t^7.671/(g1*g2^8*y) + t^7.739/(g2^8*y) + (g1*t^7.808)/(g2^8*y) + (g2^3*t^7.904)/(g1*y) + (g2^3*t^7.973)/y + t^7.986/(g1*g2^6*y) + (g1*g2^3*t^8.041)/y + t^8.054/(g2^6*y) + (g1*t^8.123)/(g2^6*y) + (2*t^8.233)/(g1^2*g2^4*y) + (3*t^8.301)/(g1*g2^4*y) + (3*t^8.37)/(g2^4*y) + (g1*t^8.438)/(g2^4*y) + (2*t^8.616)/(g1*g2^2*y) + t^8.685/(g2^2*y) + t^8.863/(g1^2*y) + (2*t^8.931)/(g1*y) - t^8.945/(g1^2*g2^9*y) - (t^4.342*y)/g2 - (t^6.643*y)/(g1*g2^5) - (t^6.712*y)/g2^5 - (g1*t^6.781*y)/g2^5 - (t^7.027*y)/g2^3 - (t^7.274*y)/(g1*g2) + (g1*t^7.411*y)/g2 + g2*t^7.658*y + (t^7.671*y)/(g1*g2^8) + (t^7.739*y)/g2^8 + (g1*t^7.808*y)/g2^8 + (g2^3*t^7.904*y)/g1 + g2^3*t^7.973*y + (t^7.986*y)/(g1*g2^6) + g1*g2^3*t^8.041*y + (t^8.054*y)/g2^6 + (g1*t^8.123*y)/g2^6 + (2*t^8.233*y)/(g1^2*g2^4) + (3*t^8.301*y)/(g1*g2^4) + (3*t^8.37*y)/g2^4 + (g1*t^8.438*y)/g2^4 + (2*t^8.616*y)/(g1*g2^2) + (t^8.685*y)/g2^2 + (t^8.863*y)/g1^2 + (2*t^8.931*y)/g1 - (t^8.945*y)/(g1^2*g2^9)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
932 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ 0.7378 0.9171 0.8045 [M:[1.0, 0.7895, 1.0, 0.7895, 1.0, 0.7895], q:[0.5, 0.5], qb:[0.5, 0.7105], phi:[0.4474]] 3*t^2.368 + t^2.684 + 3*t^3. + 6*t^4.342 + 6*t^4.737 + 3*t^4.974 + 3*t^5.053 + 7*t^5.368 + t^5.605 + 3*t^5.684 - 4*t^6. - t^4.342/y - t^4.342*y detail