Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
1422 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_5^2$ + $ M_2M_3$ + $ M_2M_6$ + $ M_7q_1\tilde{q}_2$ 0.7357 0.9145 0.8046 [X:[], M:[0.7826, 1.0276, 0.9724, 0.8378, 1.0, 0.9724, 0.8102], q:[0.6225, 0.5949], qb:[0.4051, 0.5673], phi:[0.4525]] [X:[], M:[[6, 1], [-2, -1], [2, 1], [2, -1], [0, 0], [2, 1], [4, 0]], q:[[-4, -1], [-2, 0]], qb:[[2, 0], [0, 1]], phi:[[1, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_7$, $ M_4$, $ \phi_1^2$, $ M_3$, $ M_6$, $ M_5$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_1$, $ M_1^2$, $ \phi_1\tilde{q}_2^2$, $ M_1M_7$, $ \phi_1q_2\tilde{q}_2$, $ M_1M_4$, $ M_7^2$, $ \phi_1q_2^2$, $ \phi_1q_1\tilde{q}_2$, $ M_4M_7$, $ \phi_1q_1q_2$, $ M_4^2$, $ M_1\phi_1^2$, $ \phi_1q_1^2$, $ M_7\phi_1^2$, $ M_4\phi_1^2$, $ M_1M_3$, $ M_1M_6$, $ M_1M_5$, $ M_3M_7$, $ M_6M_7$, $ M_3M_4$, $ M_4M_6$, $ M_5M_7$, $ \phi_1^4$, $ M_3\phi_1^2$, $ M_6\phi_1^2$, $ M_5\phi_1^2$, $ M_3^2$, $ M_3M_6$, $ M_6^2$ . -3 t^2.35 + t^2.43 + t^2.51 + t^2.72 + 2*t^2.92 + t^3. + t^3.79 + t^4.27 + t^4.36 + t^4.44 + t^4.7 + t^4.76 + t^4.78 + t^4.84 + 2*t^4.86 + 2*t^4.93 + t^4.94 + t^5.01 + t^5.03 + t^5.06 + t^5.09 + t^5.15 + t^5.23 + 2*t^5.27 + 2*t^5.35 + 3*t^5.43 + 2*t^5.63 + t^5.72 + 2*t^5.83 - 3*t^6. - 2*t^6.08 + t^6.14 - t^6.17 + t^6.22 + t^6.3 - t^6.49 + t^6.5 - 2*t^6.57 + t^6.62 - t^6.65 + 3*t^6.71 + 3*t^6.79 + t^6.87 + t^6.95 + t^6.99 + t^7.04 + t^7.11 + t^7.13 + t^7.16 + 3*t^7.19 + 2*t^7.21 + 4*t^7.27 + 2*t^7.29 + 3*t^7.36 + 2*t^7.37 + t^7.41 + 2*t^7.44 + t^7.46 + t^7.48 + t^7.49 + t^7.52 + t^7.54 + 3*t^7.58 + 3*t^7.61 + t^7.64 + t^7.66 + 2*t^7.68 + 2*t^7.7 + t^7.74 + 2*t^7.76 + 4*t^7.78 + t^7.81 + 2*t^7.84 + 2*t^7.86 + 2*t^7.94 + 2*t^7.98 - t^8.05 + 3*t^8.06 - t^8.13 + 4*t^8.15 + 2*t^8.18 - 2*t^8.21 + t^8.23 + t^8.27 - t^8.29 - t^8.35 - t^8.38 - t^8.41 - 5*t^8.43 + t^8.48 - t^8.5 - 6*t^8.51 + 3*t^8.55 + t^8.57 - t^8.58 - 2*t^8.6 + t^8.63 + 2*t^8.65 - t^8.68 - t^8.72 + t^8.73 + 2*t^8.75 - t^8.8 + t^8.81 - 2*t^8.83 + t^8.85 - 9*t^8.92 + t^8.93 + t^8.97 - t^4.36/y - t^6.71/y - t^6.79/y - t^6.87/y - t^7.07/y - t^7.27/y + t^7.44/y + t^7.64/y + t^7.78/y + t^7.84/y + t^7.86/y + t^7.93/y + t^7.94/y + t^8.01/y + t^8.06/y + t^8.15/y + t^8.23/y + (2*t^8.27)/y + (3*t^8.35)/y + (3*t^8.43)/y + t^8.51/y + (2*t^8.63)/y + t^8.72/y + t^8.83/y + (2*t^8.92)/y - t^4.36*y - t^6.71*y - t^6.79*y - t^6.87*y - t^7.07*y - t^7.27*y + t^7.44*y + t^7.64*y + t^7.78*y + t^7.84*y + t^7.86*y + t^7.93*y + t^7.94*y + t^8.01*y + t^8.06*y + t^8.15*y + t^8.23*y + 2*t^8.27*y + 3*t^8.35*y + 3*t^8.43*y + t^8.51*y + 2*t^8.63*y + t^8.72*y + t^8.83*y + 2*t^8.92*y g1^6*g2*t^2.35 + g1^4*t^2.43 + (g1^2*t^2.51)/g2 + g1^2*t^2.72 + 2*g1^2*g2*t^2.92 + t^3. + g1^5*t^3.79 + g1^3*g2*t^4.27 + g1*t^4.36 + t^4.44/(g1*g2) + g1^12*g2^2*t^4.7 + g1*g2^2*t^4.76 + g1^10*g2*t^4.78 + (g2*t^4.84)/g1 + 2*g1^8*t^4.86 + (2*t^4.93)/g1^3 + (g1^6*t^4.94)/g2 + t^5.01/(g1^5*g2) + (g1^4*t^5.03)/g2^2 + g1^8*g2*t^5.06 + t^5.09/(g1^7*g2^2) + g1^6*t^5.15 + (g1^4*t^5.23)/g2 + 2*g1^8*g2^2*t^5.27 + 2*g1^6*g2*t^5.35 + 3*g1^4*t^5.43 + 2*g1^4*g2*t^5.63 + g1^2*t^5.72 + 2*g1^4*g2^2*t^5.83 - 3*t^6. - (2*t^6.08)/(g1^2*g2) + g1^11*g2*t^6.14 - t^6.17/(g1^4*g2^2) + g1^9*t^6.22 + (g1^7*t^6.3)/g2 - (g2*t^6.49)/g1^2 + g1^7*t^6.5 - (2*t^6.57)/g1^4 + g1^9*g2^2*t^6.62 - t^6.65/(g1^6*g2) + 3*g1^7*g2*t^6.71 + 3*g1^5*t^6.79 + (g1^3*t^6.87)/g2 + (g1*t^6.95)/g2^2 + g1^5*g2*t^6.99 + g1^18*g2^3*t^7.04 + g1^7*g2^3*t^7.11 + g1^16*g2^2*t^7.13 + (g1*t^7.16)/g2 + 3*g1^5*g2^2*t^7.19 + 2*g1^14*g2*t^7.21 + 4*g1^3*g2*t^7.27 + 2*g1^12*t^7.29 + 3*g1*t^7.36 + (2*g1^10*t^7.37)/g2 + g1^14*g2^2*t^7.41 + (2*t^7.44)/(g1*g2) + (g1^8*t^7.46)/g2^2 + g1^3*g2^2*t^7.48 + g1^12*g2*t^7.49 + t^7.52/(g1^3*g2^2) + (g1^6*t^7.54)/g2^3 + 3*g1^10*t^7.58 + t^7.61/(g1^5*g2^3) + 2*g1^14*g2^3*t^7.61 + t^7.64/g1 + (g1^8*t^7.66)/g2 + 2*g1^3*g2^3*t^7.68 + 2*g1^12*g2^2*t^7.7 + (g1^6*t^7.74)/g2^2 + 2*g1*g2^2*t^7.76 + 4*g1^10*g2*t^7.78 + t^7.81/(g1^5*g2^2) + (2*g2*t^7.84)/g1 + 2*g1^8*t^7.86 + (2*g1^6*t^7.94)/g2 + 2*g1^10*g2^2*t^7.98 - (g2^2*t^8.05)/g1 + 3*g1^8*g2*t^8.06 - (g2*t^8.13)/g1^3 + 4*g1^6*t^8.15 + 2*g1^10*g2^3*t^8.18 - (2*t^8.21)/g1^5 + (g1^4*t^8.23)/g2 + g1^8*g2^2*t^8.27 - t^8.29/(g1^7*g2) - g1^6*g2*t^8.35 - t^8.38/(g1^9*g2^2) - (g2*t^8.41)/g1^5 - 5*g1^4*t^8.43 + g1^17*g2^2*t^8.48 - t^8.5/g1^7 - (6*g1^2*t^8.51)/g2 + 3*g1^6*g2^2*t^8.55 + g1^15*g2*t^8.57 - t^8.58/(g1^9*g2) - (2*t^8.6)/g2^2 + g1^4*g2*t^8.63 + 2*g1^13*t^8.65 - t^8.68/(g1^2*g2^3) - g1^2*t^8.72 + (g1^11*t^8.73)/g2 + 2*g1^6*g2^3*t^8.75 - t^8.8/g2 + (g1^9*t^8.81)/g2^2 - 2*g1^4*g2^2*t^8.83 + g1^13*g2*t^8.85 - 9*g1^2*g2*t^8.92 + g1^11*t^8.93 + g1^15*g2^3*t^8.97 - (g1*t^4.36)/y - (g1^7*g2*t^6.71)/y - (g1^5*t^6.79)/y - (g1^3*t^6.87)/(g2*y) - (g1^3*t^7.07)/y - (g1^3*g2*t^7.27)/y + t^7.44/(g1*g2*y) + t^7.64/(g1*y) + (g1^10*g2*t^7.78)/y + (g2*t^7.84)/(g1*y) + (g1^8*t^7.86)/y + t^7.93/(g1^3*y) + (g1^6*t^7.94)/(g2*y) + t^8.01/(g1^5*g2*y) + (g1^8*g2*t^8.06)/y + (g1^6*t^8.15)/y + (g1^4*t^8.23)/(g2*y) + (2*g1^8*g2^2*t^8.27)/y + (3*g1^6*g2*t^8.35)/y + (3*g1^4*t^8.43)/y + (g1^2*t^8.51)/(g2*y) + (2*g1^4*g2*t^8.63)/y + (g1^2*t^8.72)/y + (g1^4*g2^2*t^8.83)/y + (2*g1^2*g2*t^8.92)/y - g1*t^4.36*y - g1^7*g2*t^6.71*y - g1^5*t^6.79*y - (g1^3*t^6.87*y)/g2 - g1^3*t^7.07*y - g1^3*g2*t^7.27*y + (t^7.44*y)/(g1*g2) + (t^7.64*y)/g1 + g1^10*g2*t^7.78*y + (g2*t^7.84*y)/g1 + g1^8*t^7.86*y + (t^7.93*y)/g1^3 + (g1^6*t^7.94*y)/g2 + (t^8.01*y)/(g1^5*g2) + g1^8*g2*t^8.06*y + g1^6*t^8.15*y + (g1^4*t^8.23*y)/g2 + 2*g1^8*g2^2*t^8.27*y + 3*g1^6*g2*t^8.35*y + 3*g1^4*t^8.43*y + (g1^2*t^8.51*y)/g2 + 2*g1^4*g2*t^8.63*y + g1^2*t^8.72*y + g1^4*g2^2*t^8.83*y + 2*g1^2*g2*t^8.92*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
925 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_5^2$ + $ M_2M_3$ + $ M_2M_6$ 0.7207 0.8863 0.8132 [X:[], M:[0.8101, 1.0276, 0.9724, 0.8653, 1.0, 0.9724], q:[0.6087, 0.5812], qb:[0.4188, 0.5536], phi:[0.4594]] t^2.43 + t^2.6 + t^2.76 + 2*t^2.92 + t^3. + t^3.49 + t^3.89 + t^4.3 + t^4.38 + t^4.46 + t^4.7 + t^4.78 + t^4.86 + 2*t^4.87 + t^4.95 + 2*t^5.03 + 2*t^5.19 + 3*t^5.35 + 2*t^5.51 + 2*t^5.67 + t^5.76 + 2*t^5.83 + t^5.92 - 3*t^6. - t^4.38/y - t^4.38*y detail